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APPROXIMATE CONTROLLABILITY OF SEMILINEAR CONTROL

SYSTEMS IN HILBERT SPACES

N. I. MAHMUDOV1, N. ŞEMI1, §

Abstract. This paper deals with the approximate controllability of semilinear evolution
systems in Hilbert spaces. Sufficient condition for approximate controllability have been
obtained under natural conditions.
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1. Introduction

We are given a probability space (Ω,ℑ, P ) together with a normal filtration (ℑt)t≥0. We
consider three real separable spaces K,X and U , and Q-Wiener process on (Ω,ℑ, P ) with
covariance linear bounded operator Q such that trQ < ∞. We assume that there exists
a complete orthonormal system {ek}k≥1 in K, a bounded sequence of nonnegative real

numbers λk such that Qek = λkek, k = 1, 2, ..., and a sequence {βk}k≥1 of independent
Brownian motions such that

⟨w (t) , e⟩ =
∞∑
k=1

√
λk ⟨ek, e⟩βk (t) , e ∈ K, t ∈ [0, b] ,

and ℑt = ℑw
t , where ℑw

t is the sigma algebra generated by {w (s) : 0 ≤ s ≤ t}. Let L0
2 =

L2

(
Q1/2K;X

)
be the space of all Hilbert-Schmidt operators from Q1/2K to X with the

inner product ⟨ψ, ϕ⟩L0
2
= tr [ψQϕ]. Lp (ℑb, X) is the Banach space of all ℑb−measurable

square integrable variables with values in X. Lp
ℑ(0, b;X) is the Banach space of all p-

square integrable and ℑt−adapted processes with values in X. Let C (0, b;Lp (ℑ, X)) be
the Banach space of continuous maps from [0, b] into Lp (ℑ, X) satisfying the condition
sup {E ∥φ (t)∥p : t ∈ [0, b]} < ∞. Cp (0, b;X) is the closed subspace of C (0, b;Lp (ℑ, X))
consisting of measurable and ℑt−adapted X-valued processes φ ∈ C (0, b;Lp (ℑ, X)) en-

dowed with the norm ∥φ∥Cp
=

(
sup
0≤t≤b

E ∥φ(t)∥pX

) 1
p

.

Abstract semilinear differential equation serves as a formulation for many control sys-
tems described by partial or functional differential equations.Controllability theory for

1 Department of Mathematics, Eastern Mediterranean University, Gazimagusa,
TRNC via Mersin 10, Turkey,
e-mail: nazim.mahmudov@emu.edu.tr and nidai.semi@emu.edu.tr

§ Manuscript received 03 January 2012.
TWMS Journal of Applied and Engineering Mathematics Vol.2 No.1 c⃝ Işık University, Department
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abstract linear control systems in infinite-dimensional spaces is well-developed, and exten-
sively investigated in the literature, see [1], [6], [17] and [23] and the references therein.
Several authors have extended controllability concepts to infinite-dimensional systems rep-
resented by nonlinear evolution equations. The approximate controllability for the systems
of differential equations has been investigated by several authors, see for instance [2]- [24].

This paper is devoted to the approximate controllability problems of the following semi-
linear control system{

dy (t) = [Ay (t) + (Bu) (t) + f (t, y (t))] dt+
∫ t
0 σ (r, y (r)) dw (r) ,

y (0) = ξ, 0 ≤ t ≤ b,
(1)

in a real Hilbert space (X, ∥·∥) . The meaning of all notations are listed in the following:
A is the infinitesimal generator of a C0-semigroup {S (t) : t ≥ 0} , u ∈ L2

ℑ (0, b;U) is a
control function, U is a Hilbert space, B is a linear bounded operator from L2

ℑ (0, b;U) to
L2
ℑ (0, b;X) , f : [0, b]×X → X, σ : [0, b]×X → L0

2.
Denote the solution of (1) corresponding to a control u by y (·;u). Then y (b;u) is the

state value at the terminal time b. Introduce the set

Rb (f) =
{
y (b;u) : u ∈ L2

ℑ (0, b;U)
}
,

which is called the reachable set of system (1) at terminal time b, its closure in L2 (ℑb, X)

is denoted by Rb (f).

Definition 1. System (1) is said to be approximately controllable on [0, b] if Rb (f) =
L2 (ℑb, X).

2. Assumptions

Throughout the paper we impose the following assumptions:

: (A1) (f, σ) : [0, b] ×X → X × L0
2 is locally Lipschitz continuous in y uniformly in

t ∈ [0, b] : there exists a constant L > 0 such that

∥f (t, y1)− f (t, y2)∥+ ∥σ (t, y1)− σ (t, y2)∥L0
2
≤ L ∥y1 − y2∥

for any t ∈ [0, b] .
: (A2) There exists L1 > 0 such that for all (t, y) ∈ [0, b]×X

∥f (t, y)∥+ ∥σ (t, y)∥L0
2
≤ L1 (1 + ∥y∥)

: (A3) For any p ∈ L2
ℑ(0, b;X), there exists a function q ∈ Im (B) such that Ξp = Ξq,

where Ξ : L2
ℑ(0, b;X) → L0

2 is defined as follows

Ξp =

∫ b

0
S (b− s) p (s) ds, p ∈ L2

ℑ(0, b;X).

The assumption (A3) was introduced by Naito in [15]. LetN = kerΞ =
{
p ∈ L2

ℑ(0, b;X) : Ξp = 0
}

and let G be an orthogonal projection operator from L2
ℑ(0, b;X) into N⊥ and ImB be the

range of B. It follows from (A3) that {x+N}∩ ImB ̸= ∅ for any x ∈ N⊥. Therefore, the
operator P : N⊥ → ImB defined by

Px = x∗,

where x∗ ∈ {x+N} ∩ ImB and ∥x∗∥ = min
{
∥y∥ : y ∈ {x+N} ∩ ImB

}
is well defined.

The operator P is bounded [15].
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3. Approximate controllability

This section provides the main results and several lemmas that will be used to prove
the main results.

Under the assumptions (A1) and (A2), for any control u ∈ L2
ℑ(0, b;U) the system (1)

has a unique mild solution. This mild solution is defined as a solution of the following
integral equation:

y (t;u) = S (t) ξ +

∫ t

0
S (t− s) [(Bu) (s) + f (s, y (s))] ds

+

∫ t

0
S (t− s)

∫ s

0
σ (r, y (r)) dw (r) ds, 0 ≤ t ≤ b. (2)

Similarly, for any z ∈ L2
ℑ(0, b;X), the following integral equation

x (t; z) = x (t) = S (t) ξ +

∫ t

0
S (t− s) [z (s) + f (s, x (s))] ds

+

∫ t

0
S (t− s)

∫ s

0
σ (r, x (r)) dw (r) ds, 0 ≤ t ≤ b (3)

has a unique mild solution x (·; z). Therefore, the following operator W : L2
ℑ(0, b;X) →

C2 (0, b;X) can be defined (Wz) (·) = x (·; z).

Lemma 2. For any z1, z2 ∈ L2
ℑ(0, b;X) the following inequality holds:

E ∥(Wz1) (t)− (Wz1) (t)∥2 ≤ 3M exp
(
3MLb2 (b+ 1)

) ∫ t

0
E ∥z1 (s)− z2 (s)∥2 ds.

Proof. Let z1, z2 ∈ L2
ℑ(0, b;X). Then

E ∥(Wz1) (t)− (Wz2) (t)∥2 ≤ 3M

∫ t

0
E ∥z1 (s)− z2 (s)∥2 ds

+ 3MLb (b+ 1)

∫ t

0
E ∥(Wz1) (s)− (Wz2) (s)∥2 ds,

where M = sup {∥S (t)∥ : 0 ≤ t ≤ b} . By the Gronwall inequality we have

E ∥(Wz1) (t)− (Wz2) (t)∥2

≤ 3M

∫ t

0
E ∥z1 (s)− z2 (s)∥2 ds

+ 3MLb (b+ 1)

∫ t

0

∫ s

0
3ME ∥z1 (τ)− z2 (τ)∥2 dτ exp (3MLb (b+ 1) (t− s)) ds

= 3M

∫ t

0
E ∥z1 (s)− z2 (s)∥2 ds−

∫ t

0

∫ s

0
3ME ∥z1 (τ)− z2 (τ)∥2 dτds exp (3MLb (b+ 1) (t− s))

= 3M

∫ t

0
E ∥z1 (s)− z2 (s)∥2 ds−

∫ s

0
3ME ∥z1 (τ)− z2 (τ)∥2 dτ exp (3MLb (b+ 1) (t− s)) |s=t

s=0

+ 3M

∫ t

0
exp (3MLb (b+ 1) (t− s))E ∥z1 (s)− z2 (s)∥2 ds

≤ 3M exp
(
3MLb2 (b+ 1)

) ∫ t

0
E ∥z1 (s)− z2 (s)∥2 ds.

�
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By the definition of reachable set Rb (0) , for any h ∈ Rb (0) there exists u ∈ L2
ℑ(0, b;U)

such that

h = S (b) ξ +

∫ b

0
S (b− s) (Bu) (s) ds.

Define an operator J : N⊥ → N⊥ as follows

J v = GBu−GΓPv, v ∈ N⊥, (4)

where Γ : L2
ℑ(0, b;X) → L2

ℑ(0, b;X) is the operator defined by

(Γz) (t) = f (t, (Wz) (t)) +

∫ t

0
σ (r, (Wz) (r)) dw (r) .

For any v ∈ N⊥, we have Pv ∈ L2
ℑ(0, b;X), ΓPv ∈ L2

ℑ(0, b;X), and GΓPv ∈ N⊥.
Therefore, J is well defined.

Lemma 3. The operator J defined by (4) has a unique fixed point in N⊥.

Proof. The proof is based on the classical Banach fixed point theorem for contractions. It
is clear that J maps N⊥ into itself. Let v1, v2 ∈ N⊥. We show that there exists a natural
number n such thatJ n is a contraction mapping. Indeed,

E ∥J v1 (t)− J v2 (t)∥2

≤ E ∥(ΓPv1) (t)− (ΓPv2) (t)∥2

≤ L2E ∥(WPv1) (t)− (WPv2) (t)∥2 + L

∫ t

0
E ∥(WPv1) (s)− (WPv2) (s)∥2 ds

≤ 3
(
L2 + L

)
bM exp

(
3MLb2 (b+ 1)

) ∫ t

0
E ∥(Pv1) (s)− (Pv2) (s)∥2 ds

≤ 3
(
L2 + L

)
bM exp

(
3MLb2 (b+ 1)

)
∥P∥2

∫ t

0
E ∥v1 (s)− v2 (s)∥2 ds

= l

∫ t

0
E ∥v1 (s)− v2 (s)∥2 ds.

Similarly,

E
∥∥J 2v1 (t)− J 2v2 (t)

∥∥2 ≤ l

∫ t

0
E ∥J v1 (s)− J v2 (s)∥2 ds

≤ l2
∫ t

0

∫ s

0
E ∥v1 (r)− v2 (r)∥2 drds ≤ l2t

∫ t

0
E ∥v1 (s)− v2 (s)∥2 ds.

Thus, it is obvious that

E
∥∥J n+1v1 (t)− J n+1v2 (t)

∥∥2 ≤ l

∫ t

0
E ∥J nv1 (s)− J nv2 (s)∥2 ds

≤ ln+1

∫ t

0

sn−1

(n− 1)!

∫ s

0
E ∥v1 (r)− v2 (r)∥2 drds

≤ ln+1 t
n

n!

∫ t

0
E ∥v1 (s)− v2 (s)∥2 ds,
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and, consequently

E
∥∥J n+1v1 − J n+1v2

∥∥2 = ∫ b

0
E
∥∥J n+1v1 (t)− J n+1v2 (t)

∥∥2 dt
≤ ln+1 b

n+1

n!

∫ b

0
E ∥v1 (s)− v2 (s)∥2 ds = ln+1 b

n+1

n!
E ∥v1 − v2∥2 .

It is known that ln+1 bn+1

n! < 1 for sufficiently large n. This results that J n+1 is a contrac-

tion mapping for sufficiently large n. Then J has a unique fixed point in N⊥.
Similarly

E ∥J v (t)∥2 ≤ 2E ∥(Bu) (t)∥2 + 2E ∥(ΓPv) (t)∥2

≤ 2E ∥(Bu) (t)∥2 + L1

(
1 +E ∥(WPv) (t)∥2

)
.

Now we state and prove the main result. �
Theorem 4. Assume the assumptions (A1), (A2), (A3). Then the system (1) is approx-
imately controllable on [0, b] .

Proof. Note that the assumption (A3) implies the approximate controllability of the linear

system associated with (1). Then Rb (0) = L2 (ℑb, X) and to prove the approximate
controllability of (1) it suffices to show that

Rb (0) ⊂ Rb (f).

In other words, we need to show that for any ε > 0 and for any h ∈ Rb (0), there exists

yε ∈ Rb (f) such that E ∥yε − h∥2 < ε. By Lemma 3 the operator J has a fixed point in
N⊥. So there exists v∗ ∈ N⊥ such that

J v∗ = GBu−GΓPv∗.

Recalling that Pv∗ ∈ (v∗ +N) ∩ ImB, and G is the projection from L2 (0, b;X) into N⊥,
we have ∫ b

0
S (b− s) (Pv∗) (s) ds =

∫ b

0
S (b− s) v∗ (s) ds,∫ b

0
S (b− s)Gp (s) ds =

∫ b

0
S (b− s) p (s) ds,∫ b

0
S (b− s) (Bu) (s) ds

=

∫ b

0
S (b− s)

[∫ s

0
σ (r, x (r;Pv∗)) dw (r) + f (s, x (s;Pv∗)) + v∗ (s)

]
ds

=

∫ b

0
S (b− s)

[∫ s

0
σ (r, x (r;Pv∗)) dw (r) + f (s, x (s;Pv∗)) + (Pv∗) (s)

]
ds.

Finally,

h = S (b) ξ +

∫ b

0
S (b− s)

[∫ s

0
σ (r, x (r;Pv∗)) dw (r) + f (s, x (s;Pv∗)) + (Pv∗) (s)

]
ds

= x (b;Pv∗) .

On the other hand there exists a sequence un ∈ L2
ℑ (0, b;U) such that Bun → Pv∗ as

n→ ∞. This implies that
x (b;Bun) → x (b;Pv∗) = h
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as n→ ∞. Since x (b;Bun) = y (b;un) ∈ Rb (f) , we obtain that h ∈ Rb (f). This completes
the proof of the theorem. �

4. Example

Let X = L2 (0, π) and en (x) = sin (nx) for n ≥ 1. Define A : X → X by Ay = y′′ with
domain

D (A) =
{
y ∈ X : y and y′ are absolutely continuous, y′′ ∈ X, y (0) = y (π) = 0

}
.

Then the operator

Ay = −
∞∑
n=1

n2 ⟨y, en⟩ en, y ∈ D (A) ,

and A generates strongly continuous semigroup {S (t) : t ≥ 0} defined by

S (t) =
∞∑
n=1

e−n2t ⟨y, en⟩ en, y ∈ X.

Define the space U by

U =

{
u : u =

∞∑
n=2

unen, ∥u∥2 =
∞∑
n=2

u2n <∞

}
.

Define an operator B : U → X as follows:

Bu = 2u2e1 +

∞∑
n=2

unen.

Consider the following semilinear heat equation
∂y (t, x)

∂t
=
∂2y (t, x)

∂x2
+Bu (t, x) + f (t, y (t, x)) +

∫ t
0 σ (s, y (s, x)) dw (s) , 0 < t < b, 0 < x < π,

y (t, 0) = y (t, π) = 0, 0 ≤ t ≤ b,
y (t, x) = ξ (x) , 0 ≤ x ≤ π.

(5)
System (5) can be written in the abstract form (1). It follows from [16] that (A3) holds and
the corresponding linear system of (5) is approximately controllable on [0, b]. Assuming
that f and σ satisfy Lipschitz and growth conditions we may see that (A1) and (A2) are
satisfied. It follows from Theorem 4 that system (5) is approximately controllable on [0, b].
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