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APPLICATIONS OF CHEBYSHEV POLYNOMIALS ON λ-PSEUDO

BI-STARLIKE AND λ-PSEUDO BI-CONVEX FUNCTIONS WITH

RESPECT TO SYMMETRICAL POINTS

ABBAS KAREEM WANAS, §

Abstract. The purpose of this work is to use the Chebyshev polynomial expansions to
seek upper bounds for the second and third coefficients of functions belongs to a subclass
of λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical
points in the open unit disk.
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1. Introduction

The importance of Chebyshev polynomial in numerical analysis is increased in both
theoretical and practical points of view. There are four kinds of Chebyshev polynomials.
Several researchers dealing with orthogonal polynomials of Chebyshev family, contain
mainly results of Chebyshev polynomials of first kind Tn(t), the second kind Un(t) and
their numerous uses in different applications one can refer [7, 9, 11]. The Chebyshev
polynomials of the first and second kinds are well known and they are defined by

Tn(t) = cosnθ and Un(t) =
sin(n+ 1)θ

sin θ
(−1 < t < 1),

where n indicates the polynomial degree and t = cosnθ.
Let A stand for the family of functions f which are analytic in the open unit disk

U = {z ∈ C : |z| < 1} that have the form:

f(z) = z +

∞∑
n=2

anz
n. (1)

Also, let S be the subclass of A consisting of the form (1) which are univalent in
U . It is well known (see [8]) that every function f ∈ S has an inverse f−1, defined by
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f−1(f(z)) = z, (z ∈ U) and f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1
4), where

g(w) = f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in
U . Let Σ stand for the class of bi-univalent functions in U given by (1). For a brief
history and interesting examples of functions that are in (or are not in) the class Σ,
together with various other properties of the bi-univalent functions class Σ, one can refer
the work of Srivastava et al. [13] and the references stated therein. Recently, many authors
introduced various subclasses of the bi-univalent functions class Σ and investigated non
sharp estimates on the first two coefficients |a2| and |a3| in the Taylor-Maclaurin series
expansion (1) (see [1, 2, 3, 4, 6, 10]).

A function f ∈ S is called starlike with respect to symmetrical points, if (see [12])

Re

{
zf ′(z)

f(z)− f(−z)

}
> 0, z ∈ U.

The set of all such functions is denote by S∗s .
The class of starlike functions with respect to symmetrical points obviously includes the
class of convex functions with respect to symmetrical points, Cs, satisfying the following
condition:

Re

{
(zf ′(z))′

(f(z)− f(−z))′
}
> 0, z ∈ U.

Recently, Babalola [5] defined the class Lλ of λ-pseudo-starlike functions as follows:
Let f ∈ A and λ ≥ 1. Then f ∈ Lλ of λ-pseudo-starlike functions in U if and only if

Re

{
z (f ′(z))λ

f(z)

}
> 0, z ∈ U.

With a view to recalling the principal of subordination between analytic functions, let
the functions f and g be analytic in U . We say that the function f is said to be subordinate
to g, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(z)| < 1
(z ∈ U) such that f(z) = g (w(z)). This subordination is denoted by f ≺ g or f(z) ≺ g(z)
(z ∈ U). It is well known that, if the function g is univalent in U , then f ≺ g if and only
if f(0) = g(0) and f(U) ⊂ g(U).

Definition 1.1. For λ ≥ 1, γ ≥ 0 and t ∈ (1
2 , 1], a function f ∈ Σ is said to be in the

class T sΣ(λ, γ, t) if it satisfies the subordinations:(
2z (f ′(z))λ

f(z)− f(−z)

)γ (
2
(
(zf ′(z))′

)λ
(f(z)− f(−z))′

)1−γ

≺ H(z, t) =
1

1− 2tz + z2

and (
2w (g′(w))λ

g(w)− g(−w)

)γ (
2
(
(wg′(w))′

)λ
(g(w)− g(−w))′

)1−γ

≺ H(w, t) =
1

1− 2tw + w2
,

where the function g = f−1 is given by (2).

We note that if t = cosβ, where β ∈ (−π3 ,
π
3 ), then

H(z, t) =
1

1− 2 cosβz + z2
= 1 +

∞∑
n=1

sin(n+ 1)β

sinβ
zn, z ∈ U.

Therefore
H(z, t) = 1 + 2 cosβz +

(
3 cos2 β − sin2 β

)
z2 + · · · , z ∈ U.
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From [15], we can write

H(z, t) = 1 + U1(t)z + U2(t)z2 + · · · (z ∈ U, t ∈ (−1, 1)) ,

where

Un−1 =
sin(narc cos t)√

1− t2
(n ∈ N = {1, 2, · · · }) ,

are the Chebyshev polynomials of the second kind. Also, it is known that

Un(t) = 2tUn−1(t)− Un−2(t)

and
U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, · · · . (3)

The generating function of the first kind of Chebyshev polynomial Tn(t), t ∈ [−1, 1] is
given by

∞∑
n=0

Tn(t)zn =
1− tz

1− 2tz + z2
, z ∈ U.

The Chebyshev polynomials of first kind Tn(t) and of the second kind Un(t) are connected
by

dTn(t)

dt
= nUn−1(t), Tn(t) = Un(t)− tUn−1(t), 2Tn(t) = Un(t)− Un−2(t).

2. Main Results

Theorem 2.1. For λ ≥ 1, γ ≥ 0 and t ∈ (1
2 , 1], let f given by (1) be in the class T sΣ(λ, γ, t).

Then

|a2| ≤
t
√

2t√∣∣∣(λ+ 2γ − 3) t2 − λ2 (γ − 2)2 (2t2 − 1)
∣∣∣

and

|a3| ≤
t2

λ2 (γ − 2)2 +
2t

(3λ− 1) |3− 2γ|
.

Proof. Let f ∈ T sΣ(λ, γ, t). Then there exists two analytic functions u, v : U −→ U given
by

u(z) = u1z + u2z
2 + u3z

3 + · · · (z ∈ U) (4)

and
v(w) = v1w + v2w

2 + v3w
3 + · · · (w ∈ U), (5)

with u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1, z, w ∈ U such that(
2z (f ′(z))λ

f(z)− f(−z)

)γ (
2
(
(zf ′(z))′

)λ
(f(z)− f(−z))′

)1−γ

= 1 + U1(t)u(z) + U2(t)u2(z) + · · · (6)

and(
2w (g′(w))λ

g(w)− g(−w)

)γ (
2
(
(wg′(w))′

)λ
(g(w)− g(−w))′

)1−γ

= 1 + U1(t)v(w) + U2(t)v2(w) + · · · . (7)

Combining (4), (5), (6) and (7), we obtain(
2z (f ′(z))λ

f(z)− f(−z)

)γ (
2
(
(zf ′(z))′

)λ
(f(z)− f(−z))′

)1−γ

= 1 + U1(t)u1z +
[
U1(t)u2 + U2(t)u2

1

]
z2 + · · ·

(8)
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and(
2w (g′(w))λ

g(w)− g(−w)

)γ (
2
(
(wg′(w))′

)λ
(g(w)− g(−w))′

)1−γ

= 1+U1(t)v1w+
[
U1(t)v2 + U2(t)v2

1

]
w2+· · · .

(9)
It is well-known that if |u(z)| < 1 and |v(w)| < 1, z, w ∈ U , then

|ui| ≤ 1 and |vi| ≤ 1 forall i ∈ N. (10)

Comparing the corresponding coefficients in (8) and (9), after simplifying, we have

−2λ(γ − 2)a2 = U1(t)u1, (11)

2
[
λ2 (γ − 2)2 + λ(3γ − 4)

]
a2

2 + (3λ− 1)(3− 2γ)a3 = U1(t)u2 + U2(t)u2
1, (12)

2λ(γ − 2)a2 = U1(t)v1 (13)

and

2
[
λ2 (γ − 2)2 + λ(5− 3γ) + (2γ − 3)

]
a2

2 + (3λ− 1)(2γ − 3)a3 = U1(t)v2 + U2(t)v2
1. (14)

It follows from (11) and (13) that

u1 = −v1 (15)

and

8λ2 (γ − 2)2 a2
2 = U2

1 (t)(u2
1 + v2

1). (16)

If we add (12) to (14), we find that

2
(

2λ2 (γ − 2)2 + (λ+ 2γ − 3)
)
a2

2 = U1(t)(u2 + v2) + U2(t)(u2
1 + v2

1). (17)

Substituting the value of u2
1 + v2

1 from (16) in the right hand side of (17), we get

2

[
2λ2 (γ − 2)2

(
1− 2U2(t)

U2
1 (t)

)
+ (λ+ 2γ − 3)

]
a2

2 = U1(t)(u2 + v2). (18)

Further computations using (3), (10) and (18), we obtain

|a2| ≤
t
√

2t√∣∣∣(λ+ 2γ − 3) t2 − λ2 (γ − 2)2 (2t2 − 1)
∣∣∣ .

Next, if we subtract (14) from (12), we deduce that

2(3λ− 1)(3− 2γ)(a3 − a2
2) = U1(t)(u2 − v2) + U2(t)(u2

1 − v2
1). (19)

In view of (15) and (16), we get from (19)

a3 =
U2

1 (t)

8λ2 (γ − 2)2 (u2
1 + v2

1) +
U1(t)

2 (3λ− 1) (3− 2γ)
(u2 − v2).

Thus applying (3), we obtain

|a3| ≤
t2

λ2 (γ − 2)2 +
2t

(3λ− 1) |3− 2γ|
.

�

For γ = 1, the class T sΣ(λ, γ, t) reduced to the class T sΣ(λ, 1, t) of λ-pseudo bi-starlike
functions with respect to symmetrical points. For functions belongs to this class, we
conclude the following result.
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Corollary 2.1. For λ ≥ 1 and t ∈ (1
2 , 1], let f given by (1) be in the class T sΣ(λ, 1, t).

Then

|a2| ≤
t
√

2t√
|(λ− 1) t2 − λ2 (2t2 − 1)|

and

|a3| ≤
t2

λ2
+

2t

3λ− 1
.

For γ = 0, the class T sΣ(λ, γ, t) reduced to the class T sΣ(λ, t) of λ-pseudo bi-convex
functions with respect to symmetrical points. For functions belongs to this class, we
conclude the following result.

Corollary 2.2. For λ ≥ 1 and t ∈ (1
2 , 1], let f given by (1) be in the class T sΣ(λ, t). Then

|a2| ≤
t
√

2t√
|(λ− 3) t2 − 4λ2 (2t2 − 1)|

and

|a3| ≤
t2

4λ2
+

2t

3(3λ− 1)
.

If we choose λ = 1 in Corollary 2.2, we obtain the result for well-known class F scΣ (t)
which was considered recently by Wanas and Majeed [14].

Corollary 2.3. ([14]) For t ∈ (1
2 , 1], let f given by (1) be in the class F scΣ (t). Then

|a2| ≤
t
√

2t√
|2− 5t2|

and

|a3| ≤
t(3t+ 4)

12
.
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