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COMPUTING INTEGER POWERS FOR A CERTAIN FAMILY OF

SKEW CIRCULANT MATRICES

A. ÖTELEŞ, §

Abstract. In this paper, we derive a formula for the entries of the integer powers of a
certain type of skew circulant matrices of odd and even order in terms of the Chebyshev
polynomials of the first and second kind. Finally, we give a Maple procedure along with
some numerical examples in order to verify our calculation.

Keywords: Skew circulant matrix, eigenvalues, eigenvectors, Jordan’s form, Chebyshev
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1. Introduction

A certain type of transformation of a set of numbers can be represented as the mul-
tiplication of a vector by a square matrix. Repetition of the operation is equivalent to
multiplying the original vector by a power of the matrix. Solving some difference equa-
tions, differential and delay differential equations and boundary value problems, we need to
compute the arbitrary integer powers of a square matrix. Properties of powers of matrices
are thus of considerable importance [1, 2, 3].

One can find in [4] the rth power (r ∈ N) of an n× n matrix An using the well-known
expression

Arn = PnJ
r
nP
−1
n , (1)

where Jn is the Jordan’s form of An, and Pn is the transforming matrix. Matrices Jn and
Pn can be found with the help of eigenvalues and eigenvectors of the matrix An. If the
matix An is invertible then the expression given by (1) is also valid for negative integers.
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An n×n skew circulant matrix Sn := scircn (s0, s1, . . . , sn−1) is a square matrix having
the form

Sn :=



s0 s1 s2 . . . sn−2 sn−1

−sn−1 s0 s1
. . . sn−2

−sn−2 −sn−1 s0
. . .

. . .
...

...
. . .

. . .
. . .

. . . s2

−s2
. . .

. . .
. . . s1

−s1 −s2 . . . −sn−2 −sn−1 s0


,

where each row is a cyclic shift of the row above it.
As it is well-known, skew circulant and circulant matrices have a wide range of appli-

cations such as in graph theory, mechanics, mathematical chemistry, signal processing,
coding theory and image processing, etc. They arise in applications involving the discrete
Fourier transform and the study of cyclic codes for error correction. They also play a
crucial role for solving various differential equations. Numerical solutions of certain types
of elliptic and parabolic partial differential equations with periodic boundary conditions
often involve linear systems associated with circulant matrices [5, 6, 7, 8].

In recent years, computing the integer powers of circulant matrices has been a very popu-
lar problem by using equation (1). For instance, Rimas derived a general expression for the
entries of the rth power (r ∈ N) of the n×n real symmetric circulant circn (0, 1, 0, . . . , 0, 1)
depending on the Chebyshev polynomials (see [9] or [10] for the odd case and [11] or [12]
for the even case).

In [13], Gutiérrez derived a single formula by generalizing the results obtained [9] and
[10] for the entries of the positive integer powers of complex symmetric circulant matrix
of odd and even order given as

circn

(
b0, b1, . . . , bn−1

2
, bn−1

2
, . . . , b1

)T
; if n is odd,

circn

(
b0, b1, . . . , bn

2
−1, bn

2
, bn

2
−1, . . . , b1

)T
; if n is even,

and in [14], he also derived two separate formulas for the entries of the positive integer
powers of complex skew-symmetric circulant matrix of odd and even order given as

circn

(
0, b1, . . . , bn−1

2
,−bn−1

2
, . . . ,−b1

)T
; if n is odd,

circn

(
0, b1, . . . , bn

2
−1, 0,−bn

2
−1, . . . ,−b1

)T
; if n is even.

In [15], Köken and Bozkurt derived a general expression for the entries of the rth
power (r ∈ N) of the circulant matrix circn (0, a, 0, . . . , 0, b) of odd order depending on the
Chebyshev polynomials.

In [16], the authors derived a single formula for the entries of the rth power of the circu-
lant matrix circn (a0, a1, 0, . . . , 0, a−1) of odd and even order depending on the Chebyshev
polynomials.

In [17], Köken derived two separate formulas for the entries of the positive integer powers
for the skew circulant matrix scircn (0, a, 0, . . . , 0,−b) of odd and even order depending on
the Chebyshev polynomials.
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In this paper, we derive a single formula for the entries of the rth power (r ∈ Z) for the
skew circulant matrix having the form

Bn := scircn (a, b, 0, . . . , 0, c)

:=



a b 0 . . . 0 c

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

−b 0 . . . 0 −c a


,

of odd and even order depending on the Chebyshev polynomials. This study is an extension
of the results obtained in [17] for the positive integer powers of the skew circulant matrix
scircn (0, a, 0, . . . , 0,−b) with (n ∈ N). Finally, the paper finishes a Maple 13 procedures
along with some numerical examples in order to verify our calculation.

2. Main Results

The eigenvalue decomposition of an n× n skew circulant matrix (see [5]) is that

scircn (s0, s1, . . . , sn−1) = GnDnG
∗
n, (2)

where * denotes conjugate transpose (i.e G∗n = G
T
n ), Gn is the n × n square matrix with

the entries

[Gn]jk =
1√
n

e
π(2k−1)(j−1)

n
i, 1 ≤ j, k ≤ n

and Dn = diag (λ1, λ2, . . . , λn) with

λk =
n∑
q=1

sq−1e
π(2k−1)(q−1)

n
i, 1 ≤ k ≤ n, (3)

where i =
√
−1.

Let Um (x) be the mth degree Chebyshev polynomial of the second kind with m ∈
N ∪ {−1, 0} [18]:

Um (x) =
sin ((m+ 1) arccosx)

sin arccosx
, −1 ≤ x ≤ 1 (4)

and Tm (x) is the mth degree Chebyshev polynomial of the first kind, with m ∈ N ∪ {0}
[18]:

Tm (x) = cos (m arccosx) , −1 ≤ x ≤ 1. (5)

Theorem 2.1. Let Bn = scircn (a, b, 0, . . . , 0, c) be an n × n invertible skew circulant

matrix for 3 ≤ n ∈ N and αh = cos π(2h−1)
n with 1 ≤ h ≤ n. Then (j, k)th entry of Br

n is
given by:

[Br
n]jk =

1

n
(L1 + L2)

for all r ∈ Z and 1 ≤ j, k ≤ n, where L1, L2 are respectively

L1 =

bn+1
2 c∑

h=1

[(
a+ (b− c)αh + i (b+ c) sign (n+ 1− 2h)

√
1−α2

h

)r
×(

T|j−k| (αh) + isign (j − k) sign (n+ 1− 2h)
√

1−α2
hU|j−k|−1 (αh)

)]
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and

L2 =

bn2 c∑
h=1

[(
a+ (b− c)αh − i (b+ c) sign (n+ 1− 2h)

√
1−α2

h

)r
×(

T|j−k| (αh)− isign (j − k) sign (n+ 1− 2h)
√

1−α2
hU|j−k|−1 (αh)

)]
.

Here bxc is the largest integer less than or equal to x, sign denotes the signum function

sign (x) =

 1; if x > 0,
0; if x = 0,
−1; if x < 0.

Proof. By using (2) we can write the (j, k)th entry of Br
n as

[Br
n]jk = [(GnDnG

∗
n)r]jk = [GnD

r
nG
∗
n]jk =

n∑
h=1

[Gn]jh [Dr
nG
∗
n]hk

=

n∑
h=1

[Gn]jh λ
r
h[Gn]kh =

1

n

n∑
h=1

λrhe
π(2h−1)(j−1)

n
ie−

π(2h−1)(k−1)
n

i.

From the last equation we have

[Br
n]jk =

1

n

n∑
h=1

λrhe
π(2h−1)(j−k)

n
i. (6)

From (3) we can write λh as

λh =
n∑
q=1

[Bn]1q e
π(2h−1)(q−1)

n
i

= ae
π(2h−1)0

n
i + be

π(2h−1)1
n

i + ce
π(2h−1)(n−1)

n
i.

Since

e
π(2h−1)(n−1)

n
i = eπ(2h−1)i−π(2h−1)

n
i = −e−

π(2h−1)
n

i,

then we get λh as

λh = a+ be
π(2h−1)

n
i − ce−

π(2h−1)
n

i.

If β ∈ R then

eβi = cosβ + i sinβ.

Therefore,

λh = a+ (b− c) cos
π (2h− 1)

n
+ i (b+ c) sin

π (2h− 1)

n
. (7)

Furthermore, αh = cos π(2h−1)
n and

sin
π (2h− 1)

n
=


√

1−α2
h; if n+ 1− 2h > 0,

−
√

1−α2
h; if n+ 1− 2h < 0.

(8)

Consequently, λh can be obtained as

λh = a+ (b− c)αh + i (b+ c) sign (n+ 1− 2h)
√

1−α2
h. (9)
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Thus, [Br
n]jk can be expressed from (6) as

[Br
n]jk =


1
n

n+1
2∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

n∑
h=n+3

2

λrhe
π(2h−1)(j−k)

n
i

 ; if n is odd,

1
n

[ n
2∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

n∑
h=n

2
+1

λrhe
π(2h−1)(j−k)

n
i

]
; if n is even,

=


1
n

[n+1
2∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

n−1
2∑

h=1

λrn+1−he
π(2(n+1−h)−1)(j−k)

n
i

]
; if n is odd,

1
n

[ n
2∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

n
2∑

h=1

λrn+1−he
π(2(n+1−h)−1)(j−k)

n
i

]
; if n is even.

Notice that

cos
π (2 (n+ 1− h)− 1)

n
= cos

(
2π − π (2h− 1)

n

)
= cos

π (2h− 1)

n
(10)

and

sin
π (2 (n+ 1− h)− 1)

n
= sin

(
2π − π (2h− 1)

n

)
= − sin

π (2h− 1)

n
. (11)

Taking into account (7), (10) and (11) we obtain the following fact for the eigenvalues of
Bn

λn+1−h = λh (12)

for 1 ≤ h ≤ n. Morever,

e
π(2(n+1−h)−1)(j−k)

n
i = e2π(j−k)i−π(2h−1)(j−k)

n
i = e−

π(2h−1)(j−k)
n

i

for 1 ≤ h ≤ n. Consequently, [Br
n]jk can be deduced as

[Br
n]jk =


1
n

[n+1
2∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

n−1
2∑

h=1

λh
r
e−

π(2h−1)(j−k)
n

i

]
; if n is odd,

1
n

[ n
2∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

n
2∑

h=1

λh
r
e−

π(2h−1)(j−k)
n

i

]
; if n is even.

Furthermore, ⌊
n+1

2

⌋
= n+1

2 and
⌊
n
2

⌋
= n−1

2 ; if n is odd,⌊
n+1

2

⌋
= n

2 and
⌊
n
2

⌋
= n

2 ; if n is even.

Thus,

[Br
n]jk =

1

n

b
n+1
2 c∑

h=1

λrhe
π(2h−1)(j−k)

n
i +

bn2 c∑
h=1

λh
r
e−

π(2h−1)(j−k)
n

i

 =
1

n
[L1 + L2] ,

where

L1 =

bn+1
2 c∑

h=1

λrhe
π(2h−1)(j−k)

n
i,
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and

L2 =

bn2 c∑
h=1

λh
r
e−

π(2h−1)(j−k)
n

i.

If β ∈ R then

eβi = cosβ + i sinβ.

Therefore, we obtain that

L1 =

bn+1
2 c∑

h=1

λrh

(
cos

π (2h− 1) (j − k)

n
+ i sin

π (2h− 1) (j − k)

n

)
,

and

L2 =

bn2 c∑
h=1

λh
r
(

cos
π (2h− 1) (j − k)

n
− i sin

π (2h− 1) (j − k)

n

)
.

Observe that from (4) and (5)

T|j−k| (αh) = T|j−k|

(
cos

π (2h− 1)

n

)
= cos

π (2h− 1) |j − k|
n

= cos
π (2h− 1) (j − k)

n
,

and

U|j−k|−1 (αh) = U|j−k|−1

(
cos

π (2h− 1)

n

)
=

sin π(2h−1)|j−k|
n

sin π(2h−1)
n

= sign (j − k)
sin π(2h−1)(j−k)

n

sin π(2h−1)
n

.

Consequently,

L1 =

bn+1
2 c∑

h=1

λrh

(
T|j−k| (αh) + isign (j − k) sin

π (2h− 1)

n
U|j−k|−1 (αh)

)
, (13)

and

L2 =

bn2 c∑
h=1

λh
r
(
T|j−k| (αh)− isign (j − k) sin

π (2h− 1)

n
U|j−k|−1 (αh)

)
. (14)

Then the theorem follows by substituting (8) and (9) into (13) and (14). �

From Theorem 2.1 we can easily derive the expressions given by [17, Theorem 2.1] when
the order is even and [17, Theorem 2.2] when the order is odd for the entries of the powers
of the matrix scircn (0, a, 0, . . . , 0,−b).

Remark 2.1. We notice that from (12) the diagonal matrix Dn has the following form

Dn =

 diag
(
λ1, λ2, . . . , λn−1

2
, λn+1

2
, λn−1

2
, . . . , λ2, λ1

)
; if n is odd,

diag
(
λ1, λ2, . . . , λn

2
, λn

2
, . . . , λ2, λ1

)
; if n is even.
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Corollary 2.1. Let Bn = scircn (a, b, 0, . . . , 0,−b) be an n× n invertible skew-symmetric

circulant matrix for 3 ≤ n ∈ N and αh = cos π(2h−1)
n with 1 ≤ h ≤ n. Then (j, k)th entry

of Br
n is given by:

[Br
n]jk =

1

n

bn+1
2 c∑

h=1

ln−2h+1 ((a+ 2b)αh)r T|j−k| (αh) (15)

for all r ∈ Z and 1 ≤ j, k ≤ n, where bxc is the largest integer less than or equal to x and

ls =

{
1; if s = 0,
2; otherwise.

Proof. From Theorem 2.1, we have

[Br
n]jk =

1

n
(L1 + L2)

for all r ∈ Z and 1 ≤ j, k ≤ n, where L1, L2 are respectively

L1 =

bn+1
2 c∑

h=1

(a+ 2bαh)r
(
T|j−k| (αh) + isign (j − k) sign (n+ 1− 2h)×

√
1−α2

hU|j−k|−1 (αh)

)
and

L2 =

bn2 c∑
h=1

(a+ 2bαh)r
(
T|j−k| (αh)− isign (j − k) sign (n+ 1− 2h)×

√
1−α2

hU|j−k|−1 (αh)

)
.

Since ⌊
n−1

2

⌋
= n−1

2 =
⌊
n
2

⌋
; if n is odd,⌊

n+1
2

⌋
= n

2 =
⌊
n
2

⌋
; if n is even,

then if n is odd,

[Br
n]jk =

2

n

n−1
2∑

h=1

(a+ 2bαh)r T|j−k| (αh) +
1

n

(
a+ 2bαn+1

2

)
T|j−k|

(
αn+1

2

)
, (16)

and if n is even,

[Br
n]jk =

2

n

n
2∑

h=1

(a+ 2bαh)r T|j−k| (αh) . (17)

Consequently, we get (15) by using properties of the floor function in the equations (16)

and (17). So the theorem is proved. �
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Now let us consider the tridiagonal matrix An := tridiagn (−c, a, b) as

An :=



a b 0 . . . 0 0

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 −c a


.

Then the following theorem gives the relationship between determinants of the matrices
An = tridiagn (−c, a, b) and Bn = scircn (a, b, 0, . . . , 0, c).

Theorem 2.2. Let An = tridiagn (−c, a, b) and Bn = scircn (a, b, 0, . . . , 0, c). Then

|Bn| = a |An−1|+ 2bc |An−2|+ (−1)n bn + cn.

Proof. By applying the Laplace expansion according to the first row of Bn, we get

|Bn| = a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

− b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c b 0 . . . 0 0

0 a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

−b 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

+ (−1)n+1 c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c a b . . . 0 0

0 −c a
. . . 0

0 0 −c . . .
. . .

...
...

. . .
. . .

. . .
. . . b

0
. . .

. . .
. . . a

−b 0 . . . 0 0 −c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

.

Since

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c b 0 . . . 0 0

0 a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

−b 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

= −c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−2

−b (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b 0 0 . . . 0 0

a b 0
. . . 0

−c a b
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 0

−b 0 . . . −c a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−2
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and∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c a b . . . 0 0

0 −c a
. . . 0

0 0 −c
. . .

. . .
...

...
. . .

. . .
. . .

. . . b

0
. . .

. . .
. . . a

−b 0 . . . 0 0 −c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

= −c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c b 0 . . . 0 0

0 −c b
. . . 0

0 0 −c
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 0 −c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−2

−b (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−2

,

then

|Bn| = a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1

+ 2bc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0

−c a b
. . . 0

0 −c a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . b

0 0 . . . 0 −c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−2

+ (−1)n bn + cn

= a |An−1|+ 2bc |An−2|+ (−1)n bn + cn,

which is desired. �

3. Numerical example

In this section, we give two examples. One of them is 4 × 4 and the other is 5 × 5
skew circulant matrix. We calculated 5th and −3th powers of these matrices, respectively.
These examples can be verified by using Maple procedure given by Appendix.

Let Bn be an n × n skew circulant matrix. Consequently, Br
n is also skew circulant

matrix with r ∈ N [5].

Example 3.1. Let B4 = scirc4 (−2, 1, 0, 3) be the 4 × 4 skew circulant matrix. From
Theorem 2.1, (j, k)th entry of B5

4 is[
B5

4

]
jk

=
1

4
(L1 + L2) (18)

for 1 ≤ j, k ≤ 4, where

L1 =
2∑

h=1

λ5
h

(
T|j−k| (αh) + isign (j − k) sign (5− 2h)

√
1−α2

hU|j−k|−1 (αh)

)
,

and

L2 =
2∑

h=1

λh
5
(
T|j−k| (αh)− isign (j − k) sign (5− 2h)

√
1−α2

hU|j−k|−1 (αh)

)
with αh = cos π(2h−1)

4 and i =
√
−1. By using (9) we have

λ1 = −3.4142 + 2.8284i,
λ2 = 0.5857 + 2.8284i,

λ3 = λ2 = −0.5857− 2.8284i,

λ4 = λ1 = −3.4142− 2.8284i.

(19)

By substituting (19) into (18) we get B5
4 = scirc4 (728, 484,−320,−788).
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Example 3.2. Let B5 = scirc5 (4,−3, 0, 0, 5) be the 5×5 invertible skew circulant matrix.
From Theorem 2.1, (j, k)th entry of B−3

5 is[
B−3

5

]
jk

=
1

5
(L1 + L2) (20)

for 1 ≤ j, k ≤ 5, where

L1 =
3∑

h=1

λ−3
h

(
T|j−k| (αh) + isign (j − k) sign (6− 2h)

√
1−α2

hU|j−k|−1 (αh)

)
,

and

L2 =

2∑
h=1

λh
−3
(
T|j−k| (αh)− isign (j − k) sign (6− 2h)

√
1−α2

hU|j−k|−1 (αh)

)
with αh = cos π(2h−1)

5 and i =
√
−1. By using (9) we have

λ1 = −2.4721 + 1.1755i,
λ2 = 6.4721 + 1.9021i,
λ3 = 12,

λ4 = λ2 = 6.4721− 1.9021i,

λ5 = λ1 = −2.4721− 1.1755i.

(21)

By substituting (21) into (20) we get B−3
5 = scirc5 (−0.0036,−0.0161,−0.0194,−0.0154,−0.0079).

4. Conclusions

Skew circulant and circulant matrices have so many applications in mathematics and
engineering. For example, graph theory, signal processing, coding theory, image process-
ing, boundary value problems, parallel computing, telecommunication system analysis,
and so on. There is a vast literature concerned with the powers of skew circulant and
circulant matrices, in terms of Chebyshev polynomials. In this paper, we introduced and
studied a single formula for the entries of the integer powers of a certain type of skew
circulant matrix of odd and even order in terms of the Chebyshev polynomials of the first
and second kind.

Appendix. The following Maple procedure calculates the rth power (r ∈ Z) of the
invertible skew circulant matrix Bn = scircn (a, b, 0, . . . , 0, c).

restart:
with(LinearAlgebra):
power:=proc(n,r,a,b,c)
local f,B,alpha,p,lambda,P;
f:=(j,k)->piecewise(k-j=0,a,k-j=1,b,k-j=n-1,c,k-j=-1,-c,k-j=-n+1,-b,0);
B:=Matrix(n,n,f):
alpha:=h->cos(Pi*(2*h-1)/n);
lambda:=(h)->evalf(a+(b-c)*alpha(h)+(b+c)*I*sign(n+1-2*h)*
sqrt(1-alpha(h)ˆ2));
p:=(j,k)->evalf((1/n)*(sum(((a+(b-c)*alpha(h)+(b+c)*I*
sign(n+1-2*h)*sqrt(1-alpha(h)ˆ2))ˆr)*(ChebyshevT(abs(j-k),
alpha(h))+sign(j-k)*I*sign(n+1-2*h)*sqrt(1-(alpha(h))ˆ2)*
ChebyshevU(abs(j-k)-1,alpha(h))),h=1..floor((n+1)/2))+
sum((a+(b-c)*alpha(h)-(b+c)*I*sign(n+1-2*h)*sqrt(1-
alpha(h)ˆ2))ˆr*(ChebyshevT(abs(j-k),alpha(h))-sign(j-k)*
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I*sign(n+1-2*h)*sqrt(1-(alpha(h))ˆ2)*ChebyshevU(abs(j-k)-1,
alpha(h))),h=1..floor(n/2))));
P:=Matrix(n,n,p);
print(B);
print(P);
end proc:
power(n,r,a,b,c);
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Ahmet Öteleş received his PhD degree in Mathematics at Selçuk University. His
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