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LACEABILITY PROPERTIES IN EDGE TOLERANT CORONA

PRODUCT GRAPHS

P.GOMATHI1, R.MURALI2, §

Abstract. A connected graph G is termed Hamiltonian-t-laceable if there exists in it a
Hamiltonian path between every pair of vertices u and v with the property d(u, v) = t ,
1 ≤ t ≤ diam(G), where t is a positive integer. The corona product of G and H, denoted
by GoH is obtained by taking one copy of G called the center graph, |V (G)| copies of
H called the outer graph and taking the i th vertex of G adjacent to every vertex of the
ith copy of H where 1 ≤ i ≤ |V (G)|. In this paper, we establish laceability properties in
the edge tolerant corona product graph KnoPm.

Keywords: Hamiltonian graph, Hamiltonian laceable graph, Hamiltonian-t-laceable graph,
Corona graph.
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1. Introduction

Let G be a finite, simple, connected and undirected graph. Let u and v be two vertices
in G. The distance between u and v denoted by d(u, v) is the length of a shortest path
in G. G is Hamiltonian laceable if there exists in it a Hamiltonian path between every
pair of vertices at an odd distance. G is Hamiltonian-t-laceable if there exists in G a
Hamiltonian path between every pair of vertices u and v with the property d(u, v) = t ,
1 ≤ t ≤ diam(G), where t is a positive integer. Throughout this paper, Pm and Kn will
denote the path graph and complete graph with m and n vertices respectively.

Laceability in the brick products of even cycles was explored by Alspach et.al. in [1]. A
characterization for a 1-connected graph to be Hamiltonian-t-laceable for t = 1, 2 and 3 is
given in [3] and this was extended to t = 4 and 5 by Thimmaraju and Murali [4]. Leena
Shenoy [5] studied Hamiltonian laceability properties in product graphs involving cycles
and paths. More results in the laceability properties of product graphs can be found in
[6], [7], [8], and [9]. In this paper, we establish laceability properties in the edge tolerant
corona product KnoPm.
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Definition 1.1. Let G and H be two graphs. The corona product GoH is obtained by
taking one copy of G called the center graph, |V (G)| copies of H called the outer graph and
taking i th vertex of G adjacent to every vertex of the ith copy of H where 1 ≤ i ≤ |V (G)|.

Figure 1. The corona product GoH

Definition 1.2. A graph G∗ is k-edge fault tolerant with respect to a graph G if the graph
obtained by removing any k edges from G∗ contains G, where k is a positive integer.

Definition 1.3. Let P be a path between the vertices vi and vj in a graph G and let
P ′ be a path between the vertices vj and vk. Then, the path P ∪ P ′ is the path obtained
by extending the path P between vi and vj to vk through the common vertex vj (i.e. if
P : vi....vj and P ′ : vj ....vk then P ∪ P ′ : vi....vj .....vk).

2. Results

Theorem 2.1. For n ≥ 5 and m ≥ 3, the n − 2 edge fault tolerant graph KnoPm is
Hamiltonian-1-laceable.

Proof. Let G = KnoPm, V (G) = (vi,0; 1 ≤ i ≤ n) ∪ (vi,j ; 1 ≤ i ≤ n; 1 ≤ j ≤ m) where vi,0
are the vertices of the complete graph Kn and vi,j are the vertices of the |V (Kn)| copies
of Pm, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Thus, G has (m + 1)n vertices, nC2 + 2m + 1 edges and
diam(G) = 3.

Since d(vi,j , vi,(j+1)) = d(vi,0, vi,j) = d(vi,0, v(i+1),0) = d(vi,0, v(i+j),0) = 1 in G for all
1 ≤ i ≤ n, 1 ≤ j ≤ m, it is enough to prove that there exists a hamiltonian path in G
between these pairs of vertices.

claim 1. The vertices vi,j and vi,(j+1) are attainable for i, j 6= 0

In G, d(vi,j , vi,(j+1)) = 1 where 1 ≤ j ≤ (m− 1) and the path

P :
j⋃

k=1

vi,j−k+1
⋃

vi,0
m⋃
k=0

v(i+2),k

⋃
v(i+3),(m−k)

⋃
v(i+1),k

( n+i−1⋃
t=i+4

m⋃
k=0

vt,k

)m−j−1⋃
k=0

vi,(m−k)
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in the n − 2 edge fault tolerant graph G∗ has a hamiltonian path between the vertices
vi,j and vi,(j+1).

Figure 2. Corona product K5oP5 with d(v1,2, v1,3) = 1

claim 2. The vertices vi,0 and vi,j are attainable

In G, d(vi,0, vi,j) = 1 where 1 ≤ j ≤ m and the path is

P : vi,0
m⋃
k=0

[
v(i+2),k

⋃
v(i+3),(m−k)

⋃
v(i+1),k

] [n+i−1⋃
t=i+4

m⋃
k=0

vt,k

]
m−j−1⋃
k=0

vi,(m−k)
j⋃

k=1

vi,k in the

n − 2 edge fault tolerant graph G∗ has a hamiltonian path between the vertices vi,0 and
vi,(j+1).

In G, d(vi,0, vi,1) = 1. In this case G∗ is a n − 2 edge fault tolerant graph with the
Hamiltonian-1-laceable path as above.

claim 3. The vertices vi,0 and v(i+1),0 are attainable.

In G, d(vi,0, v(i+1),0) = 1 where i = 1, 2, 3..., n and the path is

P : vi,0
m⋃
k=0

[
v(i+2),k ∪ v(i+3),(m−k)

] n+i−1⋃
t=i+4

m⋃
k=0

vt,k
m⋃
k=0

vi,(k+1)

m⋃
k=0

v(i+1),(m−k) in the n − 2

edge fault tolerant graph G∗ has a hamiltonian path between the vertices vi,0 and v(i+1),0.

claim 4. The vertices vi,0 and v(i+j),0 are attainable.

In G, d(vi,0, v(i+j),0) = 1 where 1 < j < (n−2) and the path is P :
m⋃
k=0

[
vi,k

⋃
v(i+1),(m−k)

]
[
j+i−1⋃
t=i+2

m⋃
k=0

vt,k

]p
n+i−1⋃

t=i+j+1

m⋃
k=0

vt,k
m⋃
k=0

v(i+j),(m−k) in the n − 2 edge fault tolerant graph G∗
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Figure 3. Corona product K5oP5 with d(v2,0, v3,0) = 1

has a hamiltonian path between the vertices vi,0 and v(i+j),0, where p =

{
1 j ≥ 3
0 j < 3

}
Hence the proof.

�

Figure 4. Corona product K5oP5 with d(v1,0, v4,0) = 1
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Theorem 2.2. For n ≥ 5 and m ≥ 3, the n − 2 edge fault tolerant graph KnoPm is
Hamiltonian-2-laceable.

Proof. The order of the graph G is same as the Theorem 2.1.

Since d(vi,j , vi,(j+s)) = d(vi,j , v(i+s),0) = 2 in G for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, it is enough
to prove that there exists a hamiltonian path in G between these pairs of vertices.

claim 1. The vertices Vi,j and Vi,(j+s) are attainable.

In G, d(vi,j , vi,(j+s)) = 2 where 1 ≤ j ≤ (m − 2), 2 ≤ s ≤ (m − j) and the path is

P :
j⋃

k=1

vi,(j−k+1) ∪ vi,0
j+s−1⋃
k=j+1

vi,k
n−1⋃
t=i+1

m⋃
k=0

[
vt,(m−k) ∪ v(t+1),k

]m−j−s⋃
k=0

vi,(m−k) in the n − 2

edge fault tolerant graph G∗ is a hamiltonian path between the vertices vi,j and vi,(j+s).

Figure 5. Corona product K5oP5 with d(v2,2, v2,5) = 2

claim 2. The vertices vi,j and v(i+s),0 are attainable.

In G, d(vi,j , v(i+s),0) = 2 where 1 ≤ j ≤ m, 1 ≤ s ≤ n− i and the path is

P :
j⋃

k=1

vi,(j−k+1)

⋃
vi,0

m⋃
k=j+1

vi,k

[
s+i−1⋃
t=i+1

m⋃
k=0

vt,k

]l n+i−1⋃
t=i+s+1

m⋃
k=0

vt,k
m⋃
k=0

v(i+s),(m−k) in the n−1

edge fault tolerant graph G∗ is a hamiltonian path between the vertices vi,j and v(i+s),0

where l =

{
1 s > 1
0 s ≤ 1

}
Hence the proof. �
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Figure 6. Corona product K5oP5 with d(v3,3, v5,0) = 2

Theorem 2.3. For n ≥ 5 and m ≥ 3, the n − 1 edge fault tolerant graph KnoPm is
Hamiltonian-3-laceable.

Proof. The order of the graph G is same as the Theorem 2.1

Since d(vi,j , v(i+s),q) = 3 in G for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, it is enough to prove that
there exists a hamiltonian path in G between these pair of vertices.

claim. The vertices vi,j and v(i+s),q are attainable.

In G, d(vi,j , v(i+s),q) = 3 where 1 ≤ s ≤ (n− i), 1 ≤ j, q ≤ m and the path is

P :
j⋃

k=1

vi,(j−k+1)

⋃
vi,0

m⋃
k=j+1

vi,k

[
s+i−1⋃
t=i+1

m⋃
k=0

vt,k

]l n+i−1⋃
t=i+s+1

m⋃
k=0

vt,k
m−q⋃
k=1

v(i+s),(m−k+1)

⋃
v(i+s),0

q⋃
k=1

v(i+s),k in the n − 1 edge fault tolerant graph G∗ has a hamiltonian path between the

vertices vi,j and v(i+s),q. Where l =

{
1 s > 1
0 s ≤ 1

}
Hence the proof. �
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Figure 7. Corona product K5oP5 with d(v2,4, v4,3) = 3

3. Conclusions

Laceability properties of the Corona product of complete graph and path graph has been
explored. It is shown that this graph is Hamiltonian-t-laceable with edge fault tolerance
n− 2 or n− 1. Work on other classes of graphs is presently in progress.
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