
TWMS J. App. and Eng. Math. V.10, N.3, 2020, pp. 799-805

EXISTENCE OF A POSITIVE SOLUTION FOR SUPERLINEAR

LAPLACIAN EQUATION VIA MOUNTAIN PASS THEOREM

A. KEYHANFAR1, S.H. RASOULI2, G. A. AFROUZI1, §

Abstract. In this paper, we are going to show a nonlinear laplacian equation with the
Dirichlet boundary value as follow has a positive solution:{

−∆u + V (x)u = g(x, u) x ∈ Ω

u = 0 x ∈ ∂Ω

where, ∆u = div(∇u) is the laplacian operator, Ω is a bounded domain in R3 with
smooth boundary ∂Ω.

At first, we show the equation has a nontrivial solution. next, using strong maximal
principle, Cerami condition and a variation of the mountain pass theorem help us to
prove critical point of functional I is a positive solution.
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1. Introduction

In this paper, we consider the following nonlinear ellipitic equation of the Laplace type:{
−∆u+ V (x)u = g(x, u) x ∈ Ω

u = 0 x ∈ ∂Ω
(1.1)

where, ∆u = div(∇u) is the laplacian operator, Ω is a bounded domain in R3 with smooth
boundary ∂Ω. Also, the functions V and g ∈ C(Ω̄×R,R) satisfies the following conditions:

(V1) V ∈ C(Ω,R) , v0 := infx∈Ω V (x) > 0.
(F1) g subcritical with respect to t, and there exists q ∈ (2, 6) such that

lim
t→+∞

g(x, t)

tq−1
= 0,
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uniformly in a.e. x ∈ Ω.
(F2)

b0 ≤ lim inf
t→0+

g(x, t)

t
≤ lim inf

t→0+

g(x, t)

t
≤ a(x),

where b0 is constant, a ∈ L∞; for all x ∈ Ω̄, a(x) < λ1 on some Ω1 ⊆ Ω; with
|Ω1| > 0, λ1 is the first eigenvalue of (−∆ + v), |Ω1| is measure of Ω1.

(F3) infx∈R3 limu→∞
g(x, u)

u
> Γ := inf σ(−∆ + v) the infimum of the spectrum of the

operator (−∆ + v).

(F4) limt→+∞
g(x, t)

t
= +∞ uniformly in a.e. x ∈ Ω.

In this paper, we study the existence of positive solution for (1.1) under the above
assumptions. Since (F4) holds, problem (1.1) is called superlinear in t at +∞. In many
studies involving this superlinear problem, to obtain a nontrivial solution of (1.1), Moun-
tain pass theorem is a common tool, but in using this theorem, usually, we have to suppose
another condition, that is, for some µ > 2, M > 0

0 < µF (x, t) ≤ f(x, t)t for a.e. x ∈ X and for all |t| ≥M. (1.2)

The condition (1.2) is convenient, but it is very restrictive, in particular, it implies (F4).
To overcome this difficulty, many efforts have been made. Wang and Tang [8] studied the
following superlinear laplacian equation without condition (1.2).

−∆pu = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω (1.3)

The authors by using the following assumption for f proved the existence theorem.

(F ′) There exists θ ≥ 1 such that θG(x, t) ≥ G(x, st) for all x ∈ Ω̄, t ∈ R and s ∈ [0, 1],

where G(x, t) = f(x, t)t− pF (x, t) and F (x, t) =
∫ t

0 f(x, s)ds.

Assumption (F ′) was first introduced in [3] for p = 2, Liu and his coworker in [5]
extended it for every p > 1. Also, Gao and Tang [2] proved the existance of postive
solutions for (1.3) with following condition

(F5) There exists two constants θ ≥ 1, θ0 > 0;

θH(x, s) ≥ H(x, t)− θ0 for all x ∈ Ω̄, 0 ≤ t ≤ s.

where H(x, t) = g(x, t)t− 2G(x, t) and G(x, t) =
∫ t

0 g(x, s)ds.

Now, we want to find a solution for equation(1.1).

Theorem 1.1. Let (F1) − (F5) and (V 1) hold. Then, (1.1) has at least one postive
solution.

2. Preliminaries

In this section, we present some important lemma which will be applied to prove our
theorem. Let

E = {u ∈ H1(Ω) :

∫
Ω
V (x)u2dx <∞},

by (V 1), E is a Hilbert space with the inner product

< u, v >=

∫
Ω

(∇u∇v + V (x)uv)dx,

and the norm

‖u‖2 =

∫
Ω

(|∇u|2 + V (x)u2)dx.
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Now it is easy to verify that u ∈ E is a solution of (1.1) if and only if u ∈ E is a critical
point of the functional I : E → R defined by

I(u) =
1

2

∫
Ω

(|∇u|2 + V (x)u2)dx−
∫
G(x, u+)dx,

where G(x, t) =
∫ t

0 g(x, s)ds and t+ denotes positive part of t.I is a C1 functional with
derivative given by

< I ′(u), v >=

∫
Ω

(∇u∇v + V (x)uv)dx−
∫

Ω
g(x, u)vdx.

Definition 2.1. We say a C1 functional I satisfies Palais-Smale condition
(
Cerami

condition
)

if any sequence {un} ⊂ H1(Ω) such that

I(un) being bounded, I ′(un)→ 0, as n→ 0 (2.1)(
I(un) being bounded, (1 + ‖un‖)I ′(un)→ 0, as n→ 0

)
admits a convergent subsequence, and such a sequence is called a palais-smale sequence

(
cerami

sequence
)
.

Lemma 2.1. Let (F1) − (F4) and (V 1) hold, then the functional I satisfies the Cerami
condition.

Proof. Let {un} ⊆ E be Cerami sequence;{
I(un) = 1

2 ‖ un ‖
2 −

∫
ΩG(x, un)dx→ c as n→∞

(1+ ‖ un ‖) ‖ I ′(un) ‖→ 0 as n→∞.
(2.2)

On the other hand
1

2
I ′(un)un =

1

2

∫
Ω

(|∇un|2 + v(x)u2
n)dx− 1

2

∫
Ω
g(x, un)dx→ 0, (2.3)

we notice

0 >

∫
(| ∇u | ∇u− + v(x)u−− ‖ u− ‖2)dx−

∫
Ω
g(x, u+)u−dx =‖ u− ‖2≥ 0. (2.4)

so now, (2.2)-(2.4) implies

1

2

∫
Ω
g(x, un

+)un
+dx−

∫
Ω
G(x, un

+)dx = c+O(1). (2.5)

Next, we prove the sequence {un} is bounded. in the otherwise , there is a subsequence
of un satisfies in ‖un‖ → ∞ as n→∞.

Set wn =
un
‖un‖

, then ‖wn‖ = 1. Up to a subsequence, we assume that

wn → w inE; wn → w in Lr(2 ≤ r ≤ 6); (2.6)

wn(x)→ w(x) a.e. x ∈ Ω.

for some w ∈ E as n→∞. It is easy to see that w+ and w− have the same convergence
like (2.3), where w± = max{±w, 0} for w ∈ E.

We claim that w+ ≡ 0. Let Ω0 = {x ∈ Ω;w+(x) = 0}, Ω+ = {x ∈ Ω : w+(x) > 0}.
since ‖un‖ → +∞, then, u+

n → +∞ as n→ +∞ for a.e. x ∈ Ω+.
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Since limt→+∞
g(x,t)

t = +∞ by (F4), one has

lim
n→+∞

g(x, un
+)

un+
= +∞ a.e. x ∈ Ω+.

From (2.2) we obtain
|〈I ′(un, u)〉| ≤ εn (2.7)

where εn = (1 + ‖ un‖)‖I ′(un)‖ → 0 as n→∞. It follows from (2.7) that∣∣‖u+
n ‖2 −

∫
Ω
g(x, u+

n )u+
n dx

∣∣ ≤ εn,
which implies ∣∣‖u+

n ‖2 −
∫

Ω
g(x, u+

n )u+
n dx

∣∣ ≤ εn
≤ |g(x, u+

n )u+
n

‖u+
n ‖2

|

≤ εn

‖u+
n ‖2

+ 1.

Then, ∫
g(x, u+

n )

u+
n

(w+
n )2dx ≤ 1 +

εn

‖u+
n ‖2

. (2.8)

If |Ω+| > 0, since ‖w+
n ‖ = 1 from (2.8) one obtains

+∞←
∫
g(x, u+

n )

u+
n

(w+
n )2dx ≤ 1 +

εn

‖u+
n ‖2
→ 1,

which is a contradiction, so |Ω+| = 0 and w ≡ 0.

By (F1) and (F2), we have

g(x, t) ≤ (a(x) + ε)|t|+A|t|q−1; for all (x, t) ∈ Ω̄×R,

where A > 0 is a constant, thus

G(x, t+) ≤ 1

2
(a(x) + ε)|t|2 +A|t|q; for all (x, t) ∈ Ω̄×R. (2.9)

Now, set a sequence {tn} of real numbers such that I(tnu
+
n ) = maxt∈[0,1] I(tu+

n ). For

any integer m > 0, since w+ ≡ 0, then by (F2), (2.9) and the convergence of w+
n one has

lim sup
n→∞

∫
Ω
G(x, (4m)

1
2w+

n )dx ≤ lim sup
n→∞

(

∫
2m(λ1 + ε)(w+

n )dx+

∫
A(4m)

q
2 (w+

n )
q
2dx)

= lim
n→∞

(C1 ‖ w+
n ‖22 +C2 ‖ w+

n ‖qq)

= (C1 ‖ w+ ‖22 +C2 ‖ w+ ‖qq)
= 0,

where C1, C2 > 0 are constant. Since ‖un‖ → +∞ as n → ∞. One has 0 ≤ (4m)
1
2

‖un‖ ≤ 1

when n is big enough. By definition of tn, we obtain

I(tnu
+
n ) ≥ I((4m)

1
2w+

n ) ≥ 2m−
∫
G(x, (4m)

1
2w+

n )dx ≥ m,

which implies
I(tnu

+
n )→ +∞ as n→∞. (2.10)
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Notice that I(0) = 0, I(un)→ C, so 0 < tn < 1 when n is big enough. It follows that∫
Ω
| ∇(tnu

+
n ) |2 dx+

∫
Ω
v(x)(tnu

+
n )2 − dx

∫
g(x, tnu

+
n )tnu

+
n dx (2.11)

= 〈I ′(tnu+
n )u+

n , tnu
+
n 〉

= tn
dI(t+n )

dt
|t=tn

= 0.

But for 0 ≤ tn ≤ 1, |tnun| ≤ |un|, then (F5),(2.10) and (2.11) give∫
Ω

(
1

2
g(x, u+

n )u+
n −G(x, u+

n )dx =
1

2

∫
H(x, u+

n )dx

≥ 1

2θ

∫
H(x, tnu

+
n )− θ0)dx

=
1

θ

∫
(
1

2
g(x, tnu

+
n )tnun −G(x, tnu

+
n ))dx− θ0

2θ
|Ω|

=
1

θ
I(tnu

+
n )− θ0

2θ
|Ω| → +∞, (n→∞),

which contradicts to (2.5), so {un} is bounded. By the compactness of Sobolev embedding
and the standard procedures, we know {un} has a convergence subsequence. So, the
functional I satisfies the Cerami condition. �

Lemma 2.2. Under the assumptions of the Theorem 1.1, there exist ρ > 0 such that for
all u ∈ E with ‖ u ‖= ρ we have I(u) > 0.

Proof. Since (F2) holds, there exist a positive constant α < 1 such that∫
Ω
a(x)|u| < α

∫
Ω

(|∇u|2 + v(x)u2)dx foru ∈ E,

see [8]. Let ε > 0 be the small enough such that α+
ε

λ1
< 1. By (2.9), together with the

Poincare inequality and Sobolev inequality one obtains:

I(u) ≥ 1

2
‖u‖2 − 1

2

∫
Ω

(a(x) + ε)|u|2 −A
∫

Ω
|u|qdx

≥ 1

2
‖u‖2 − 1

2

∫
Ω

(α+
ε

λ1
)(|∇u|2 + v(x)u2)dx− C‖u‖q

=
1

2
(1− α− ε

λ1
)‖u‖2 − C‖u‖q

where C > 0 is a constant, since 1− α− ε

λ1
> 0 and q > 2, when ρ > 0 be small enough

by ‖u‖ = ρ we obtain

β =
1

2
(1− α− ε

λ1
)ρ2 − Cρ4 > 0

I|∂Bρ ≥ β > 0

. �

Lemma 2.3. Under the assumptions of the Theorem 1.1, there exists e ∈ E with ‖e‖ > ρ
such that I(e) < 0, where ρ is given by the Lemma 2.2.
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Proof. We follow the arguments in [9]. We find e for I by (F3). In fact a := infx∈Ω limn→∞ inf
g(x, u)

u
.

then by (F3) and definition of Γ there exists a nonnegative function u0 ∈ E such that∫
Ω(|∇u0|2 + v(x)u2

0)dx < a
∫

Ω u
2
0dx.

Hence, by Fatou’s lemma, we have

lim
t→+∞

sup
I(tu0)

t2
=

1

2

∫
Ω

(|∇u0|2 + v(x)u2
0)− lim

t→∞
inf

∫
Ω

G(x, tu0)

t2
dx

≤ 1

2

∫
Ω

(|∇u0|2 + v(x)u2
0)−

∫
Ω

lim inf
G(x, tu0)u2

0

t2u2
0

dx

≤ 1

2

∫
Ω

(|∇u0|2 + v(x)u2
0)dx− 1

2

∫
Ω
au2

0dx

< 0.

Hence, lim supt→+∞ I(tu0) = −∞. Then, there exists e ∈ E with ‖e‖ > ρ such that
I(e) < 0. �

3. The proof of main result

Lemmas 2.1, 2.2 and 2.3 permit the application of a variant of mountain pass theorem
(see [1]). So, we get a critical point u of the function I with I(u) ≥ β. But, from
(F2), g(x, 0) = 0. Then I(0) = 0, that is u 6= 0. Since

0 = 〈I ′(u), u−〉 = ‖u−‖2 −
∫

Ω g(x, u+)u−dx = ‖u−‖2 ≥ 0,

which implies that ‖u−‖ = 0, so u ≥ 0. By the regularity results(see[4]), u ∈ L∞(Ω) and
hence u ∈ C1(Ω) (see[6]). Since u ∈ L∞(∞), it is easy to see that ∆u+v(x)u = −g(x, u) ∈

L2
loc(Ω). From b0 ≤ limt→0+ inf

g(x, t)

t
by (F2) there exist a constant δ > 0 such that

g(x, t) ≥ (b0 − 1)t, for all 0 ≤ t ≤ δ.
By (F4), we can find a positive constant M such that g(x, t) ≥ 0 for all t ≥ M . Because
g ∈ C(Ω̄× R,R), then

| g(x, t)| ≤ B = Bδ−1δ ≤ Bδ−1t, for all δ ≤ t ≤M,

where B > 0 is a constant, hence

g(x, t) ≥ (−|b0 − 1| −Bδ−1)t, for all t ≥ 0,

since u ≥ 0, it follows that

g(x, u) ≥ (−|b0 − 1| −Bδ−1)u = −Du,

where D = |b0 − 1| + Bδ−1 > 0. Therefore, ∆u + v(x)u = −g(x, u) ≤ Du. Hence by the
strong maximum principle for ∆ + v in [7] with β(u) = D, one has u > 0 a.e. on Ω. That
is u is a positive solution of problem (1.1). The proof is completed. �

References

[1] Gasinski, L. and Papageorgiou, N. S., (2006), Nonlinear Analysis. Chapman Hall/CRC Press, Boca
Raton.

[2] Gao, T. M. and Tang, C.L., (2015), Existence of positive solutions for superlinear p-Laplacian equations.
Electronic Journal of Differential Equations, 2015, no. 40, 1-8.

[3] Jeanjean,L.,(1999), On the existence of bounded Palais-Smale sequences and application to a
Landesman-Lazer-type problem set on RN , Proceedings of the Royal Society of Edinburgh Section
A. Mathematics, 129, no. 4, 787-809.



A. KEYHANFAR, S. H. RASOULI, G. A. AFROUZI: EXISTENCE OF A POSITIVE SOLUTION... 805

[4] Ladyzenskaa, O. A. and Ural’tseva, N. N., (1968), Linear and Quasilinear Elliptic Equations, Academic
Press, New York.

[5] Liu, S. B. and Li, S. J., (2003), Infinitely many solutions for a superlinear elliptic equation, Acta
Mathematica Sinica, 46, no. 4, 625-630(Chinese).

[6] Tolksdorf. P., (1984), Regularity for a more general class of quasilinear elliptic equations, Journal of
Differential equations, 51, no. 1, 26-150.

[7] Vzquez, J. L., (1984), A strong maximum principle for some quasilinear elliptic equations, Applied
mathematics and optimization, 12, no. 3, 191-202.

[8] Wang. J. and Tang, C. L., (2006), Existence and multiplicity of solutions for a class of superlinear
p-Laplacian equations, Bound Value Probl, 2006,, 1-12.

[9] Wang, Z. P. and Zhou, H. S., (2007), Positive solution for a nonlinear stationary Schrodinger-Poisson
system in R3, Discrete Contin. Dyn. Syst., 18, 809.

Alireza Keyhanfar has been a Ph.D. student (since 2014) in the Department of
Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babol-
sar, Iran. He works on nonlinear analysis, nonlinear functional analysis theory of
differential equations and applied functional analysis.

Sayyed Hashem Rasouli has been a member in the Department of Mathematics,
Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran,
since 2007. His current research interests are nonlinear analysis, theory of differential
equations, applied functional analysis, nonlinear functional analysis, and calculus of
variations.

Ghasem Alizadeh Afrouzihas been a member in Department of Mathematics, Fac-
ulty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran, since 1989.
His current research interests are nonlinear analysis, theory of differential equations,
applied functional analysis, nonlinear functional analysis, and calculus of variations.


