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SOME NEW MULTI-STEP DERIVATIVE-FREE ITERATIVE

METHODS FOR SOLVING NONLINEAR EQUATIONS

FAROOQ AHMED SHAH1, EHSAN UL HAQ1, §

Abstract. In this paper, we use the system of coupled equation involving auxiliary
function with decomposition technique. We also use finite difference technique to suggest
and analyze some new derivative-free iterative methods for solving nonlinear equations.
Several examples are given to check the performance of developed methods numerically
as well as graphically. This technique can be implemented to suggest a wide class of new
derivative-free iterative methods for solving nonlinear equations.
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1. Introduction

Solution of nonlinear equations is an important area of research in numerical analysis
and optimization. Nonlinear problems arise in various fields of sciences and have applica-
tions in several branches of pure and applied sciences. Such type of nonlinear problems can
be studied in the general framework of nonlinear equation f(x) = 0 (see [1-15]). Several
methods exist in the literature for finding the approximate solution of nonlinear problems.
Classical Newton method [1] which possesses quadratic order of convergence is well known
method. Newton method and similar existing methods have drawbacks. For best imple-
mentation of these methods, there is a necessary condition that f ′(xn) should not be zero
or not be very small. One can easily observe this draw back in following problem. Let us
consider

f(x) = x3 − 0.003x2 + 2.4× 10−6. (1)

The Newton method [1] reduces the following form for their problem as:

xi+1 = xi −
x3i − 0.03x2i + 2.4× 10−6

3x2i − 0.06xi
(2)
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The drawback of the methods we can be observed when x approaches to 0 or 0.02 Newton
method and variants of Newton method diverge. For these types of problems derivative-
free methods are required.
To avoid such type of situation Steffensen [1, 12] introduced new method which do not
employ derivatives of function. To obtain this method Steffensen modified Newton method
with the help of finite difference scheme. Derivative free Steffensen’s method is described
as:

xn+1 = xn −
f(xn)2

f [xn + f(xn)]− f(xn)
, n = 0, 1, 2, 3, ... (3)

Steffensen’s method is free from derivatives of the function, because sometimes the applica-
tions of the iterative methods which depend upon derivatives are restricted in engineering.
Here we will find higher-order convergent derivative-free methods. In this work, we will
implement the technique of Gijji [3] to decompose the nonlinear equation for obtaining
the derivative free iterative methods along with finite difference scheme. In Section2, we
construct family of iterative methods for obtaining the approximate solution of nonlinear
equations. In Section 3, we analyze the order of convergence of these purposed methods.
In Section 4, Numerical and graphical results are exhibited to show the performance of
developed iterative methods.

2. Construction of iterative methods

In this section, we will develop multi-step iterative methods by using decomposition
technique together with finite difference scheme.
We consider the nonlinear equation

f(x) = 0 (4)

Using Taylor series we can obtain the following expression

f(γ)g(γ) + (x− γ)[f ′(γ)g(γ) + f(γ)g′(γ)] + h1(x) = 0, (5)

where g(x) is a auxiliary arbitrary function and γ is the initial guess which is in the
neighborhood of x.
We implement the following approximation

f ′(γ) ≈ f(γ + f(γ))− f(γ)

f(γ)
. (6)

Combining (4) and (5), we obtain

f2(γ)g(γ) + (x− γ)
{

[f(γ + f(γ))− f(γ)]g(γ) + f2(γ)g′(γ)
}

+ h(x) = 0. (7)

From (6), we can write the following form

x = γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
(8)

+
h(x)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
.

Where

h(x0) = f(x0)f(γ)g(γ) (9)

We express (7), in the following form as

x = c+N(x), (10)
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where

x0 = c = γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
(11)

and

N(x) =
h(x)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
. (12)

Now we construct a sequence of higher-order iterative methods by using the following
decomposition technique, which is mainly due to Gejji and Jafari [3]. This decomposition
is quite different from that of Adomian decomposition. The main idea of this technique
is to look for a solution having the series form

x =

∞∑
i=0

xi (13)

The nonlinear operator N can be decomposed as:

N (x) = N (x0) +

∞∑
i=1

N
 i∑
j=0

xj

−N
 i−1∑
j=0

xj

 (14)

Combining (11), (12) and (13), we have

∞∑
i=0

xi = c+N (x0) +

∞∑
i=1

N
 i∑
j=0

xj

−N
 i−1∑
j=0

xj

 (15)

Thus we have the following iterative scheme:

x0 = c (16)

x1 = N (x0)

x2 = N (x1)−N (x0)

...

xm+1 = N

 m∑
j=0

xj

−N
m−1∑

j=0

xj

 .

then
x0 + x2 + x3 · · ·xm+1 = N (x0 + x1 + x2 + x3 · · ·xm) . (17)

and

x = c+

∞∑
i=0

xi (18)

It can be shown that series
∑∞

i=0 xi converges absolutely and uniformly to a unique solu-
tion.
Using (7) and (17), we get the following

x0 = c = γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
(19)

and

x1=N(x) =
h(x)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
. (20)

Note that, x is approximated by

Xm = x0 + x1 + x2 + x3 · · ·xm
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where,

limm→∞Xm = x (21)

for m = 0.

x = X0 = x0 = c = γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
(22)

This formulation allows us to suggest the following one-step iterative method for solving
nonlinear equations.
Algorithm 2.1. For a given x0, find the approximate solution xn+1 by the iterative
scheme:

xn+1 = xn −
f2(xn)g(xn)

[f(xn + f(xn))− f(xn)]g(xn) + f(xn)2g′(xn)
, n = 1, 2, 3, · · · .

For m = 1

x = X1 = x0 + x1 = c+N(x) = γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
(23)

h(x)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)

= γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)

f(x0)f(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)

The formulation allows us to suggest the following iterative method for solving nonlinear
equations.
Algorithm 2.2. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
f2(xn)g(xn)

[f(xn + f(xn))− f(xn)]g(xn) + f(xn)2g′(xn)

xn+1 = xn −
f(yn)f(xn)g(xn)

[f(xn + f(xn))− f(xn)]g(xn) + f [(xn)]2g′(xn)

For m = 2
x = X2 = x0 + x1 + x2 = c+N(x0 + x1)

= γ − f2(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)
(24)

+
f(x0 + x1)f(γ)g(γ)

[f(γ + f(γ))− f(γ)]g(γ) + f(γ)2g′(γ)

This formulation allows us to suggest the following iterative method for solving nonlinear
equations.
Algorithm 2.3. For a given xn, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
f2(xn)g(xn)

[f(xn + f(xn))− f(xn)]g(xn) + f(xn)2g′(xn)

zn = yn −
f(yn)f(xn)g(xn)

[f(xn + f(xn))− f(xn)]g(xn) + f(xn)2g′(xn)

xn+1 = zn −
f(zn)f(xn)g(xn)

[f(xn + f(xn))− f(xn)]g(xn) + f(xn)2g′(xn)
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Algorithm 2.1, 2.2 and 2.3 are the main iterative schemes. We can generate various
iterative methods by using auxiliary function. For example if we chose g(xn) = e−αxn

where α ∈ <. Then we will obtain following methods for best implementation.
Algorithm 2.4. For a given xn, find the approximate solution xn+1 by the iterative
scheme:

xn+1 = xn −
f2(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2

Algorithm 2.4 produces a class of second order convergent derivative-free iterative methods
for different values of α.
Algorithm 2.5. For a given xn, finding the approximate solution xn+1 by the iterative
schemes:

yn = xn −
f2(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2

xn+1 = yn −
f(yn)f(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2

Algorithm 2.6. For a given x0, find the approximate solution xn+1 by the iterative
schemes:

yn = xn −
f2(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2

zn = yn −
f(yn)f(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2

xn+1 = zn −
f(zn)f(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2

Remark 2.1. For the best implementation of the newly derived methods, we have to select
a value of α ∈ <, which makes denominator nonzero and largest.

3. Convergence Analysis

In this section, we consider the convergence criteria of the iterative method described as
Algorithm 2.6 developed in section 2. In similar way we can check the order of convergence
of other purposed methods.

Theorem 3.1. Assume that the function f : D ⊂ R → R for an open interval D has
simple root p ∈ D . Let f(x) be smooth sufficiently in some neighborhood of the root and
then the Algorithm 2.6 has four order convergence.

Proof. let p be the simple root of f(x). Since f is sufficiently differential, then expanding
f(xn), f(xn − f(xn)), and f(xn + f(xn)) in Taylor’s series about p , we get

f(xn) = [c1en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)] (25)

and

f(xn + f(xn)) = c1(1− c1)en + (3c21c2 + c1c2 + c21c2)e
2
n +O(e3n) (26)

Where ck = f (k)(p)
f(p) , k = 2, 3, 4, · · · and c1 = f(p)

en = xn − p
Now using (24) and (25), we obtain

f(xn + f(xn))− f(xn) = −p− c21en + (3c21c2 − c2c31)e2n + (2c22c
2
1

+2c22c
3
1 + 4c22c3 + 3c3c

3
1 + c3c

4
1)e

3
n +O(e4n)
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f(xn + f(xn))− f(xn)− αf(xn)2 = −p− c21en + (3c21c2 − c2c31 − αc21)e2n (27)

+(−2αc22c
2
1 + 2c22c

2
1 + 2c22c

3
1 + 4c22c3 + 3c3c

3
1 + c3c

4
1)e

3
n +O(e4n).

Using (24),(25) and (26) in Algorithm 2.6 for yn, we have

yn = xn −
f2(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2
= (c2 + c2c1 − α)e2n (28)

− (−2c3 + 2c22 − 2αc3 + 2c22c1 − 3c1c3 − c1c3 − c3c21 + c22c
2
1

− 2αc1c2 + α2c21)e
3
n +O(e4n)

and

f(xn) = −p+ (c2c1 + c2c
2
1 − αc1)e2n (29)

− c1(−2c3 + 2c22 − 2αc3 + 2c22c1 − 3c1c3 − c1c3 − c3c21
+ c22c

2
1 − 2αc1c2 + α2c21)e

3
n +O(e4n)

By using (27) and (28) in zn of Algorithm 2.6 for yn we have

zn = yn −
f(yn)f(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2
(30)

= (2c22 − 3αc2 + 3c22c1 + c22c
2
1 − 2αc1c2 + α2)e3n +O(e4n)

and

f(zn) = −p+ c1(2c
2
2 − 3αc2 + 3c22c1 + c22c

2
1 − 2αc1c2 + α2)e3n +O(e4n) (31)

By using (29) and (30), in Algorithm 2.6 yn, we have

xn+1 = zn−
f(zn)f(xn)

[f(xn + f(xn))− f(xn)] + αf(xn)2
(32)

= −p+ (−8αc22 − 10c1c
2
2 + 5α2c2 − 3αc22c

2
1 + 3α2c1c2 + 8c32c1

+ c32c
3
1 − α3 + 4c32)e

4
n +O(e5n)

We obtain the final result from (31)

en+1 = (−8αc22−10c1c
2
2+5α2c2−3αc22c

2
1+3α2c1c2+8c32c1+c32c

3
1−α3+4c32)e

4
n+O(e5n) (33)

This error equation shows that Algorithm 2.6 is fourth order convergent iterative method.
On the same pattern one can analyze the other methods. �

4. Numerical Comparison

In this section, we test some examples to illustrate the efficiency of all derived methods
which are developed in section 2. We make computational comparison with the Stefensen’s
method as well as graphical comparison by solving some examples. We also verify the
computational order of convergence to reconfirm the order of convergence and behaviour
of the method for specific examples by using the following formulation

COC ≈ ln(|xn+1 − xn|/|xn − xn−1|)
ln(|xn − xn−1|/|xn − xn−2|)

,

For a different value of α ∈ < using in Algorithms 2.4, 2.5 and 2.6 we can obtain various
classes of iterative methods. Now we use the following examples for them comparison of
the methods for α = 0, 1/4.
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Example 4.1. A trunnion has to be cooled before it is shrink fitted into a steel hub. The
equation that gives the temperature x to which the trunnion has to be cooled to obtain the
desired contraction is given by the following equation.

Figure 1

Trunnion to be slid through the hub after contracting

f1(x) = −0.50598× 10−10x3 + 0.38292× 10−7x2 + 0.74363× 10−4x+ 0.88318× 10−2 = 0

• To find the temperature x to which the trunnion has to be cooled.
• Find the absolute approximate error at the end of each iteration.
• To observe the graph we chose x0 = −100.

The numerical comparison of these methods is shown in this table.

Table 1: Numerical results for example 4.1

Method α IT xn |xn − xn−1| |f(xn)| COC
SM 0 4 -128.75486 3.39768e−14 0.00741e−12 1.99982

Alg 2.5 0 3 -128.75486 1.02216e−12 1.39912e−11 2.97039
Alg2.6 0 3 -128.75486 4.21066e−20 1.02741e−12 3.97002
Alg2.4 1/4 4 -128.75486 1.05921e−10 1.14258e−14 1.57171
Alg 2.5 1/4 4 -128.75486 1.03966e−17 3.80822e−15 3.02572
Alg2.6 1/4 3 -128.75486 1.13554e−06 3.35592e−08 3.99281

Now the graphical comparison can be observed for the derived methods for the computa-
tions of above example. We use log |xn − xn−1| for iterations obtained from all methods.

Example 4.2. You are working for a company that makes floats for ABC commodes. The
floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm. You are asked to find
the depth to which the ball is submerged when floating in water. The equation that gives
the depth x in meters to which the ball is submerged under water is given by

f2(x) = x3 − 0.165x2 + 3.993× 10−4

We use the developed methods of finding roots of equations to find

• The depth x to which the ball is submerged under water.
• The absolute relative approximate error at the end of each iteration.
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Figure 2
Log of residual for example 4.1

Figure 3

Floating ball

• Let us assume the initial guess of the root of is 0.05. This is a reasonable guess is
good. As the extreme values of the depth x would be 0 and the diameter (0.11 m)
of the ball.

The computational comparison of these methods is shown in this table.
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Table 2 : Numerical results for example 4.2

Method α IT xn |xn − xn−1| |f(xn)| COC
SM 0 4 0.06237 4.83281e−17 3.77312e−14 2.00041

Alg 2.5 0 3 0.06237 9.15112e−19 3.81011e−7 2.61175
Alg2.6 0 3 0.06237 4.27274e−09 1.44490e−7 3.38788
Alg2.4 1/4 4 0.06237 4.83150e−17 2.60871e−4 2.00075
Alg 2.5 1/4 4 0.06237 2.21288e−18 4.96601e−25 2.62298
Alg2.6 1/4 3 0.06237 7.27688e−09 6.48490e−7 3.66652

Now for the graphical comparison of these developed methods, we use log |xn − xn−1| for
all methods to create the following graph.

Figure 4
Log of residuals for example 4.2

Example 4.3. We have function f3(x) = ex
2

+ sinx− 1, x0 = 0.25 and we find the root
of this function by using the above techniques. We have following results shown in table.

Table 3:Numerical results for example 4.3

Method α IT xn |xn − xn−1| |f(xn)| COC
SM 0 6 0.0000 4.63247e−14 1.2476e−09 1.99999

Alg 2.5 0 4 0.00000 8.00190e−11 2.2599e−14 2.76667
Alg2.6 0 4 0.00000 3.61892e−23 3.2546e−19 3.90225
Alg2.4 1/4 6 0.00000 7.805531e−29 1.0006e−09 1.99999
Alg 2.5 1/4 4 0.00000 1.19855e−20 1.0500e−14 2.99777
Alg2.6 1/4 4 0.00000 1.857974e−07 2.2521e−24 4.00111

Comparing the value of log |xn+1−xn| obtained by different techniques, we represent these
value in this graph.

Example 4.4. We have function f4(x) = x + sin(cos(x)) − 1, and x0 = 1.6 we find the
root of this function by using the above techniques. We have following results shown in
tables
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Figure 5

Log of Residual for Example 4.3

Table 4: Numerical Results for Example 4.4

Method α IT xn |xn − xn−1| |f(xn)| COC
SM 0 5 1.28146 3.37822e−17 1.00043e−08 1.99989

Alg 2.5 0 3 1.28146 2.410098e−11 1.01243e−17 2.58676
Alg2.6 0 3 1.28146 4.19832e−21 2.32121e−21 3.2467
Alg2.4 1/4 6 1.28146 8.11423e−22 2.012581e−11 1.99988
Alg 2.5 1/4 4 1.28146 2.69845e−11 1.32243e−13 2.99789
Alg2.6 1/4 3 1.28146 2.35350e−13 2.31243e−23 4.21778
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Figure 6

Log of Residuals for example 4.4

Example 4.5. We have function f5(x) = x + 3 log(x), and x0 = 0.5 we find the root of
this function by using the above techniques. We have following results shown in tables.

Table 5: Numerical results for example 4.5

Method α IT xn |xn − xn−1| |f(xn)| COC
SM 0 11 4.536403 1.117892e−19 1.1002e−05 1.99999

Alg 2.5 0 8 4.536403 1.2064144e−15 1.2005e−09 2.98991
Alg2.6 0 3 4.536403 4.9984e−23 1.0154e−11 3.76386
Alg2.4 1/4 5 4.536403 4.9159414e−14 1.1140e−13 1.99988
Alg 2.5 1/4 4 4.536403 5.15742e−11 1.0646e−14 3.029852
Alg2.6 1/4 4 4.536403 5.3577e−16 1.2546e−24 4.066916

Comparing the value of different techniques of log |xn+1 − xn| we represent this graph.

5. Conclusion

In this article, we have suggested some new iterative methods for solving nonlinear
equations. We have also analyzed the behavior of several suggested higher order iterative
methods for nonlinear equations when the derivative is replaced by some approximation.
Numerical results are given to observe the performance and convergence of these methods.
Using this technique a wide class of methods for finding simple roots of nonlinear equations
can be suggested and implemented.
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Figure 7
Log of Residuals for example 4.5
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