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INTEGRAL INEQUALITIES VIA log m-CONVEX FUNCTIONS

M. A. NOOR1, K. I. NOOR1, F. SAFDAR1, §

Abstract. In this paper, we introduce and investigate a new concept of log m-convex
functions. We establish some new Hermite-Hadamard type integral inequalities via log
m-convex functions. Our results represent refinement and improvement of the previously
known results. Several special cases are also discussed. The concept and technique of
this paper may stimulate further research in this field.
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1. Introduction

Numerous applications in business, industry, art and medicine has turned convex anal-
ysis as one of the most interesting and useful field of mathematics for last few decades.
The concept of convexity has played a crucial and significant part in the development
of several branches of mathematical and engineering sciences. Consequently several new
classes of convex functions and convex sets have been introduced and investigated, which
make this area of research very attractive and useful, see [1, 2, 5, 6, 13, 14, 17, 20, 22]. It
is well known that a function is convex if and only if, it satisfies the inequality which is
known as Hermite-Hadamard inequality. It is one of the most important inequality, see
[9, 10]. Several Hermite-Hadamard type inequalities have been derived for various classes
of convex function using different techniques, see [7, 8, 11, 12, 15, 16, 17, 19, 20, 22].

Toader [23] introduced a new class of convex functions which is known as m-convex
functions. This class is an intermediate form between the usual convexity and star shaped
property. In this paper, we introduce a new class of convex functions relative to a constant
m ∈ (0, 1], which is known as log m-convex function. It is worth mentioning that this
class of log m-convex functions is distinctly different from the log m-convex functions
which were considered in [3]. These log m-convex functions are nonconvex functions. Log
convex functions are of interest in many areas of mathematics and science. They play an
important role in mathematical statistics and the theory of special functions, see [4, 21].
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We derive some new Hermite-Hadamard integral inequalities for these nonconvex function.
Our results include a wide class of known and new inequalities as special cases.

2. Preliminaries

Let I be an interval in real line R. Let f : I = [ma, b] → R be a continuous function
and η(·, ·) : R × R → R be a continuous bifunction. First of all, we recall the following
well known results and concepts.

Definition 2.1. [23] A set S is said to be m-convex set, if there exists a fixed constant
m ∈ (0, 1], such that

((1− t)ma+ tb) ∈ S, ∀a, b ∈ S, t ∈ [0, 1].

Definition 2.2. [23] A function f : I = [0, b]→ R is said to be m-convex, where m ∈(0,1],
if

f(tma+ (1− t)f(b)) ≤ tmf(a) + (1− t)f(b), ∀a, b ∈ I, t ∈ [0, 1].

It is denoted by Km(b), the class of all m-convex function on [0, b].

If t = 1, then f(ma) ≤ m(f), which is called sub-homogeneous function.

We now introduce a new definition of log m-convex functions and derive various integral
inequalities for these log m-convex functions.

Definition 2.3. A function f : I → [0,∞) is said to be log m-convex or multiplicatively
m-convex if log (f) is convex, or equivalently if for all a, b ∈ I, m ∈ (0, 1) and t ∈ [0, 1],
one has the inequality

f(tma+ (1− t)f(b)) ≤ [mf(a)]t[f(b)]1−t, ∀a, b ∈ I, t ∈ [0, 1]. (1)

If t = 1
2 in (1), then

f
(ma+ b)

2
≤
√
mf(a)][f(b)], ∀a, b ∈ I. (2)

which is known as Jensen log m-convex function.
From definition 2.3, we have

f(tma+ (1− t)b) ≤ [mf(a)]t[f(b)]1−t. ≤ tmf(a) + (1− t)f(b).

and

log f(tma+ (1− t)b) ≤ tm log f(a) + (1− t) log f(b) ∀a, b ∈ I, t ∈ [0, 1].

This means that log m-convex functions are m-convex functions. However the converse
is not true.

It is worth mention that Bai et al. [3] introduced logm- convex function as:

Definition 2.4. A function f : I → [0,∞) is said to be m-logarithmically convex if the
inequality

f(ta+m(1− t)b) ≤ [f(a)]t[f(b)]m(1−t), ∀a, b ∈ I, t ∈ [0, 1], m ∈ (0, 1].

From definition 2.3 and Definition 2.4, it is clear that log m-convex functions are dis-
tinctly different from the log mconvex functions defined by Bai et al. [3].

We will use the following notations throughout this paper.
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(1) Arithmetic Mean: A(a, b) = a+b
2 , ∀a, b ∈ R+.

(2) Geometric Mean: G(a, b) =
√
ab, ∀a, b ∈ R+.

(3) Logarithmic mean: L(a, b) = b−a
log b−log a , ∀a, b ∈ R+, a 6= b. .

(4) Quadratic Mean: K(a, b) =
√

a2+b2

2 , ∀a, b ∈ R+..

3. Main results

In this section, we establish several new integral inequalities of Hermite-Hadamard type
for log m-convex functions.

Theorem 3.1. Let f : I = [ma, b]→ (0,∞) be a log m-convex function. Then

1√
m
f(
ma+ b

2
) ≤ exp

1

(b−ma)

∫ b

ma
log f(x)dx ≤

√
mf(a)f(b).

Proof. Let f be log m-convex function on I. Then

f(tma+ (1− t)f(b)) ≤ [mf(a)]1−t[f(b)]t, (3)

which can be written as

log f(tma+ (1− t)f(b)) ≤ (1− t) log[mf(a)] + t log[f(b)].

(4)

Integrating (4) with respect to t on [0,1], we have∫ 1

0
log f(tma+ (1− t)f(b))dt ≤

∫ 1

0
(1− t) log[mf(a)]dt+

∫ 1

0
t log[f(b)]dt

= log
√

[mf(a)][f(b)].

Thus

1

b−ma

∫ b

ma
log f(x)dx ≤ log

√
[mf(a)][f(b)]. (5)

Consider

f(
ma+ b

2
) =

f((1− t)ma+ tb+ tma+ (1− t)b)
2

≤
√

[mf((1− t)ma+ tb)][(f(tma+ (1− t)b)]. (6)

From this it follows that

log f(
ma+ b

2
) ≤ 1

2

{
log[mf((1− t)ma+ tb)] + log[f((tma+ (1− t)b)

}
. (7)
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Integrating (7) with respect to t on [0,1], we have

log f(
ma+ b

2
) ≤ 1

2

[
1

(b−ma)

∫ b

ma
logmf(x)dx+

1

(ma− b)

∫ ma

b
log f(x)dx

]
=

[
1

2(b−ma)

∫ b

ma
logmdx+

1

(b−ma)

∫ b

ma
log f(x)dx

]
=

[
logm

2(b−ma)
(b−ma) +

1

(b−ma)

∫ b

ma
log f(x)dx

]
=

[
log
√
m+

1

(b−ma)

∫ b

ma
log f(x)dx

]
.

Thus

log
f(ma+b

2 )
√
m

≤ 1

(b−ma)

∫ b

ma
log f(x)dx.

(8)

Combining(5) and (8), we have

log
f(ma+b

2 )
√
m

≤ 1

(b−ma)

∫ b

ma
logmf(x)dx ≤ log

√
mf(a)[f(b)],

which implies that

1√
m
f(
ma+ b

2
) ≤ exp

1

(b−ma)

∫ b

ma
log f(x)dx ≤

√
mf(a)f(b).

This completes the proof. �

Corollary 3.1. [7] If m = 1, then under the assumption of Theorem 3.1, we have

f(
a+ b

2
) ≤ exp

1

(b− a)

∫ b

a
log f(x)dx ≤

√
[f(a)][f(b)],

which is called the Hermite-Hadamard inequality for log convex function.

Theorem 3.2. Let f, g : I = [ma, b]→ (0,∞) be log m-convex functions. Then

1

b−ma

∫ b

am
f(x)g(ma+ b− x)dx

≤ mg(a)f(b) +mf(a)g(b)

2

≤ 1

2

{
A[f(b),mf(a)]L[f(b),mf(a)] +A[mg(a), g(b)]L[mg(a), g(b)]

}
≤ [mf(a) + (f(b))]2

16
+

[mg(a) + g(b)]2

16
+
mg(a)f(b) +mf(a)g(b)

4
.

where A and L are Arithmetic and Logarithmic means respectively.

Proof. Let f , g be log m-convex function. Then

f(tma+ (1− t)b) ≤ [mf(a)]t[f(b)]1−t

g((1− t)ma+ tb) ≤ [mg(a)]1−t[g(b)]t.
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Consider

1

b−ma

∫ b

ma
f(x)g(ma+ b− x)dx

=

∫ 1

0
f(tma+ (1− t)b)g((1− t)ma+ tb)dt

≤
∫ 1

0

[
[{mf(a)}t{f(b)}1−t][{mg(a)}1−t{g(b)}t]

]
dt

= [mg(a)f(b)]

∫ 1

0

[
mf(a)g(b)

mg(a)f(b)

]t
dt

=

[
mf(a)g(b)−mg(a)f(b)

]
log
[
mf(a)g(b)

]
− log

[
mg(a)f(b)

]
≤ mg(a)f(b) +mf(a)g(b)

2

≤ 1

2

∫ 1

0
[{f(tma+ (1− t)b)}2 + {g((1− t)ma+ tb))}2]dt

≤ 1

2

∫ 1

0

{
[{mf(a)}t{f(b)}1−t]2 + [{mg(a)}1−t{g(b)}t]2

}
dt

=
1

2

{
[f(b)]2

∫ 1

0

[
mf(a)

f(b)

]2t
dt+ [mg(a)]2

∫ 1

0

[
g(b)

mg(a)

]2t
dt

}

=
1

4

{[
[mf(a)]2 − [f(b)]2

log[mf(a)]− log[f(b)]

]
+

[
[g(b)]2 − [mg(a)]2

log[g(b)]− log[mg(a)]

]}
≤ 1

2

{
A[f(b),mf(a)]L[f(b),mf(a)] +A[mg(a), g(b)]L[mg(a), g(b)]

}
≤ 1

4

∫ 1

0
[f(tma+ (1− t)b+ g((1− t)ma+ tb)]2dt

≤ 1

4

∫ 1

0

{
[{mf(a)}t{f(b)}1−t]2 + [{mg(a)}1−t{g(b)}t]2

+2[{mf(a)}t{f(b)}1−t][{mg(a)}1−t{g(b)}t]
}

dt

=
1

4

{
[f(b)]2

∫ 1

0

[
mf(a)

f(b)

]2t
dt+ [mg(a)]2

∫ 1

0

[
g(b)

mg(a)

]2t
dt

+2[mg(a)f(b)]

∫ 1

0

[
mf(a)g(b)

mg(a)f(b)

]t
dt

}
=

1

8

{[
[mf(a)]2 − [f(b)]2

log[mf(a)]− log[f(b)]

]
+

[
[g(b)]2 − [mg(a)]2

log[g(b)]− log[mg(a)]

]}
+

1

2

{
mf(a)g(b)−mg(a)f(b)

log[mf(a)g(b)]− log
[
mg(a)f(b)]

}
≤ [mf(a) + f(b)]2

16
+

[mg(a) + g(b)]2

16
+
mg(a)f(b) +mf(a)g(b)

4
.

This completes the proof. �
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Corollary 3.2. [19] If m = 1, then, under the assumption of Theorem 3.2, we have

1

b− a

∫ b

a
f(x)g(a+ b− x)dx ≤ g(a)f(b) + f(a)g(b)

2

≤ 1

2

{
A[f(b), f(a)]L[f(b), f(a)] +A[g(a), g(b)]L[g(a), g(b)]

}
≤ [f(a) + f(b)]2

16
+

[g(b) + g(a)]2

16
+
g(a)f(b) + f(a)g(b)

4
.

Corollary 3.3. If f = g and m = 1, then, under the assumption of Theorem 3.2, we
obtain the result given in [24].

Theorem 3.3. Let f, g : I = [ma, b] → (0,∞) be log m-convex functions. If α + β = 1,
Then

1

b−ma

∫ b

ma
f(x)g(ma+ b− x)dx ≤ α2

[
[mf(a)]

1
α − [f(b)]

1
α

[mf(a)− f(b)]

]
L[f(b),mf(a)]

+β2
[

[g(b)]
1
β − [mg(a)]

1
β

[g(b)−mg(a)]

]
L[mg(a), g(b)],

where L is the Logarithmic mean.

Proof. Let f and g be log m-convex function on I. Then

f(tma+ (1− t)tb) ≤ [mf(a)]t[f(b)]1−t

g((1− t)ma+ tb) ≤ [mg(a)]1−t[g(b)]t.

Using young’s inequality, that is, ab ≤ αa
1
α + βb

1
β , ∀α, β > 0, α+ β = 1, we con-

sider

1

b−ma

∫ b

ma
f(x)g(ma+ b− x)dx

=

∫ 1

0
f(tma+ (1− t)b))g((1− t)ma+ tb)dt

≤
∫ 1

0

{
α[f(tma+ (1− t)b))]

1
α + β[g((1− t)ma+ tb)]

1
β

}
dt

≤
∫ 1

0

{
α{[mf(a)]t[f(b)]1−t}

1
α + β{[mg(a)]1−t[g(b)]t}

1
β

}
dt

= α[f(b)]
1
α

∫ 1

0

[
mf(a)

f(b)

] t
α

dt+ β[mg(a)]
1
β

∫ 1

0

[
g(b)

mg(a)

] t
β

dt

= α2[f(b)]
1
α

[ (mf(a)
f(b) )u

log mf(a)
f(b)

] 1
α

0

+ β2[mg(a)]
1
β

[ ( g(b)
mg(a))

u

log g(b)
mg(a)

] 1
β

0

= α2

[
[mf(a)]

1
α − [f(b)]

1
α

[log[mf(a)]− log f(b)

]
+ β2

[
[g(b)]

1
β − [mg(a)]

1
β

log[g(b)]− log[mg(a)]

]
= α2

[
[mf(a)]

1
α − [f(b)]

1
α

[mf(a)− f(b)]

]
L[f(b),mf(a)]

+β2
[

[g(b)]
1
β − [mg(a)]

1
β

[g(b)−mg(a)]

]
L[mg(a), g(b)].
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This completes the proof. �

Corollary 3.4. [19] If α=1
2 , β=1

2 , and m = 1, then, under the assumption of Theorem
3.3, we have

1

b− a

∫ b

a
f(x)g(a+ b− x)dx ≤ 1

4

{[ [f(a)]2 − [f(b)]2

[f(a)− f(b)]

]
L[f(b), f(a)]

+
[ [g(b)]2 − [g(a)]2

[g(b)− g(a)]

]
L[g(a), g(b)]

}
.

Corollary 3.5. If α=1
4 , β = 3

4 and m = 1, then, under the assumption of Theorem 3.3,
we have

1

b− a

∫ b

a
f(x)g(a+ b− x)dx

≤ 1

16

[
f4(a)− f4(b)
f(b)− f(a)

]
L[f(b), f(a)] +

9

16

[
g

4
3 (b)− g

4
3 (a)

g(b)− g(a)

]
L[g(a), g(b)].

Theorem 3.4. Let f, g : I = [ma, b] → (0,∞) be increasing and log m-convex functions.
Then

8L[mg(a), g(b)]

{
2

m+ 1
f(
ma+ b

2
)

}
≤ 1

b−ma

∫ b

ma
f4(x)dx+K2[mg(a), g(b)]

A[mg(a), g(b)]L[mg(a), g(b)] + 8.

Proof. Let f and g be log m-convex functions. Then

f(tma+ (1− t)b) ≤ [mf(a)]t[f(b)]1−t

g((1− t)ma+ tb) ≤ [mg(a)]1−t[g(b)]t.

Using the inequality,

8xy ≤ x4 + y4 + 8. ∀x, y ∈ R,
we have

8f(tma+ (1− t)b)[mg(a)]1−tt[g(b)]t

≤ f4(tma+ (1− t)b) + [mg(a)]4(1−t)[g(b)]t + 8.

Now integrating the above inequality with respect to t on [0, 1], we have

8

∫ 1

0
f(tma+ (1− t)b)[mg(a)]t[g(b)]1−tdt

≤
∫ 1

0
f4(tma+ (1− t)b)dt+

∫ 1

0
[mg(a)]4t[g(b)]4−4tdt+ 8.

As f and g are increasing functions, we have

8

∫ 1

0
f(tma+ (1− t)b)dt

∫ 1

0
[mg(a)]t[g(b)]1−tdt

≤
∫ 1

0
f4(tma+ (1− t)b)dt+

∫ 1

0
[mg(a)]4t[g(b)]4−4tdt+ 8.

(9)
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From the above inequality, it is easy to observe that

8L[mg(a), g(b)]

b−ma

∫ b

ma
f(x)dx ≤ 1

b−ma

∫ b

ma
f4(x)dx+K2[mg(a), g(b)]

A[mg(a), g(b)]L[mg(a), g(b)] + 8.

(10)

Now using the L.H.S of Hermite Hadamard’s inequality in (10), we have

8L[mg(a), g(b)]

{
2

m+ 1
f(
ma+ b

2
)

}
≤ 1

b−ma

∫ b

ma
f4(x)dx+K2[mg(a), g(b)]

A[mg(a), g(b)]L[mg(a), g(b)] + 8,

where A, L and K are Arithmetic, Logarithmic and Quadratic means respectively. �

Corollary 3.6. If m = 1, then, under the assumption of Theorem 3.4, we have

8L[g(a), g(b)]f(
a+ b

2
)

≤ 1

b− a

∫ b

a
f4(x)dx+K2[g(a), g(b)]A[g(a), g(b)]L[g(a), g(b)] + 8.

Corollary 3.7. If f = g and m = 1, then, under the assumption of Theorem 3.2, we
obtain the result given in [24].

Theorem 3.5. Let f, g : I = [ma, b] → (0,∞) be increasing and log m-convex functions.
Then

(
2

m+ 1
)

[
f(
ma+ b

2
)L[mg(a), g(b)] + g(

ma+ b

2
)L[f(b),mf(a)]

]
≤ 1

b−ma

∫ b

ma
f(x)g(x)dx+ L

[
f(b)mg(a), [mf(a)g(b)]

]
.

Proof. Let f and g be log m-convex functions. Then, ∀a, b ∈ I, t ∈ [0, 1] , we have

f(tma+ (1− t)b) ≤ [mf(a)]t[f(b]1−t

g((1− t)ma+ tb) ≤ [mg(a)]1−t[g(b)]t.

Using the inequality,

(a− b)(c− d) ≥ 0. ∀a, b, c, d ∈ R, a < b, c < d,

we have

f(tma+ (1− t)b)
[
[mg(a)]1−t[g(b)]t

]
+ [g((1− t)ma+ tb)]

[
[f(b)]1−t[mf(a)]t

]
≤ f(tma+ (1− t)b)g((1− t)ma+ tb)

+
[
[mg(a)]1−t[g(b)]t[f(b)]1−t[mf(a)]t

]
.

Now integrating the above inequality with respect to t on [0, 1], we have∫ 1

0

[f(tma+ (1− t)b)]
[
[mg(a)]1−t[g(b)]t

]
dt+

∫ 1

0

[g((1− t)ma+ tb)]
[
[f(b)]1−t[mf(a)]t

]
dt

≤
∫ 1

0

[f(tma+ (1− t)b)]g((1− t)ma+ tb)dt+

∫ 1

0

[
[mg(a)]1−t[g(b)]t[f(b)]1−t[mf(a)]t

]
dt.
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As f and g are increasing functions, we have∫ 1

0
[f(tma+ (1− t)b)]dt

∫ 1

0

[
[mg(a)]1−t[g(b)]t

]
dt

+

∫ 1

0
[g((1− t)ma+ tb)]dt

∫ 1

0

[
[f(b)]1−t[mf(a)]t

]
dt

≤
∫ 1

0
[f(tma+ (1− t)b)]dt

∫ 1

0
[g((1− t)ma+ tb)]dt

+

∫ 1

0
[f(b)mg(a)]1−t[mf(a)g(b)]tdt.

Now after some simple integration , we have

(
2

m+ 1
)

[
f(
ma+ b

2
)L[mg(a), g(b)] + g(

ma+ b

2
)L[f(b),mf(a)]

]
≤ 1

b−ma

∫ b

ma
f(x)g(x)dx+ L

[
f(b)mg(a), [mf(a)g(b)]

]
.

This completes the proof. �

Corollary 3.8. [24] If m = 1, then, under the assumption of Theorem 3.5, we have

f(
a+ b

2
)L[g(a), g(b)] + g(

a+ b

2
)L[f(b), f(a)]

≤ 1

b− a

∫ b

a
f(x)g(x)dx+ L

[
f(b)g(a), f(a)g(b)

]
.

Theorem 3.6. Let f, g : I = [ma, b] → (0,∞) be an increasing and log m-convex func-
tions. Then

1

b−ma

∫ b

ma
f2(x)dx+A[f(b),mf(a)] L[f(b),mf(a)] +A[mg(a), g(b)]

L[mg(a), g(b)]

≥ 2

m+ 1
f(
ma+ b

2
)L[f(b),mf(a)] + L[mg(a)f(b),mf(a)g(b)]

+
2

m+ 1
f(
ma+ b

2
)L[mg(a), g(b)].

Proof. Let f and g are log - convex functions. Then

f(tma+ (1− t)b) ≤ [mf(a)]t[f(b)]1−t

g((1− t)ma+ tb) ≤ [mg(a)]1−t[g(b)]t.

Using the inequality,

x2 + y2 + z2 ≥ xy + yz + zx. ∀x, y, z ∈ R, (11)

we have

f2(tma+ (1− t)b) + [mf(a)]2t[f(b)]2(1−t) + [mg(a)]2(1−t)[g(b)]2t

≥
[
f(tma+ (1− t)b)[[mf(a)]t[f(b)]1−t

]
+
[
[mf(a)]t[f(b)]1−t[mg(a)]1−t[g(b)]t

]
+
[
[mg(a)]1−t[g(b)]tf(tma+ (1− t)b)

]
.
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Now integrating the above inequality with respect to t on [0, 1], we have∫ 1

0
f2(tma+ (1− t)b)dt+

∫ 1

0

[
[mf(a)]2t[f(b)]2(1−t)

]
dt

+

∫ 1

0

[
[mg(a)]2(1−t)[g(b)]2t

]
dt

≥
∫ 1

0

[
f(tma+ (1− t)b)[mf(a)]t[f(b)]1−t

]
dt

+

∫ 1

0

[
[mf(a)]t[f(b)]1−t[mg(a)]1−t[g(b)]t

]
dt

+

∫ 1

0

[
[mg(a)]1−t[g(b)]tf(tma+ (1− t)b)

]
dt. (12)

To solve the integral in (12), let

A =

∫ 1

0
f2(tma+ (1− t)b)dt+

∫ 1

0

[
[mf(a)]2t[f(b)]2(1−t)

]
dt

+

∫ 1

0

[
[mg(a)]2(1−t)[g(b)]2t]dt

=
1

b−ma

∫ b

ma
f2(x)dx+A[f(b),mf(a)] L[f(b),mf(a)] +A[mg(a), g(b)]

L[mg(a), g(b)],

and

B =

∫ 1

0

[
f(tma+ (1− t)b)[mf(a)]t[f(b)]1−t

]
dt

+

∫ 1

0

[
[mf(a)]t[f(b)]1−t[mg(a)]1−t[g(b)]t

]
dt

+

∫ 1

0
[mg(a)]1−t[g(b)]tf(tma+ (1− t)b)dt

≥ 2

m+ 1
f(
ma+ b

2
)L[f(b),mf(a)] + L[mg(a)f(b),mf(a)g(b)]

+
2

m+ 1
f(
ma+ b

2
)L[mg(a), g(b)].

Subsituting the values of A and B in (12), we have

1

b−ma

∫ b

ma
f2(x)dx+A[f(b),mf(a)] L[f(b),mf(a)] +A[mg(a), g(b)]

L[mg(a), g(b)]

≥ 2

m+ 1
f(
ma+ b

2
)L[f(b),mf(a)] + L[mg(a)f(b),mf(a)g(b)]

+
2

m+ 1
f(
ma+ b

2
)L[mg(a), g(b)].

This completes the proof. �
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Corollary 3.9. If m = 1, then, under the assumption of Theorem 3.6, we have

1

b− a

∫ b

a
f2(x)dx+A[f(b), f(a)] L[f(b), f(a)] +A[g(a), g(b)]L[g(a), g(b)]

≥ f(
a+ b

2
)L[f(b), f(a)] + L[g(a)f(b), f(a)g(b)] + f(

a+ b

2
)L[g(a), g(b)].

conclusion

In this paper, we have introduced a new class of convex function relative to a constant
m ∈ (0, 1], which is known as log m-convex function. New integral inequalities are obtained
via these nonconvex functions. Some special cases are also discussed which have been
obtained from our results. The technique of this paper may motivate new research.
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