TWMS J. App. and Eng. Math. V.11, Special Issue, 2021, pp. 1-12

CYCLIC ORTHOGONAL DOUBLE COVERS OF 6-REGULAR
CIRCULANT GRAPHS BY DISCONNECTED FORESTS

V. SRIRAM, §

ABSTRACT. An orthogonal double cover (ODC) of a graph H is a collection G = {G, :
v € V(H)} of |V(H)| subgraphs of H such that every edge of H is contained in exactly
two members of G and for any two members G, and G, in G, | E(Gy) N E(Gy)]is 1ifu
and v are adjacent in H and it is 0 if u and v are nonadjacent in H. An ODC G of H is
cyclic if the cyclic group of order |V (H)| is a subgroup of the automorphism group of G;
otherwise it is moncyclic. Recently, Sampathkumar and Srinivasan settled the problem
of the existence of cyclic ODCs of 4regular circulant graphs. An ODC G of H is cyclic
(CODQ) if the cyclic group of order | V(H) | is a subgroup of the automorphism group
of G, the set of all automorphisms of G; otherwise it is noncyclic. In this paper, we have
completely settled the existence problem of CODCs of 6regular circulant graphs by four
acyclic disconnected graphs.
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1. INTRODUCTION

Let H be any graph and let G = {G1,Ga,...,Gy(my} be a collection of | V(H) |
subgraphs of H. G is a double cover (DC) of H if every edge of H is contained in exactly
two members in G. If G; = G for alli € {1,2,...,|V(H)|}, then G is a DC of H by G.
If Gis a DC of H by G, then |V(H)||E(G)| = 2|E(H)|.

A DC G of H is an orthogonal double cover (ODC) of H if there exists a bijective
mapping ¢ : V(H) — G such that for every choice of distinct vertices u and v in
V(H), | E(p(u)) N E(p(v)) | is 1 if wv € E(H) and is 0 otherwise. If G; = G for all
i€ {1,2,...,|V(H)|}, then G is an ODC of H by G.

An automorphism of an ODC G = {G1,Ga,...,Gy gy} of H is a permutation 7 :
V(H) — V(H) such that {7(G1),7(G2),...,7(Gymy)} = G, where for
i€ {1,2,...,|V(H)|}, m(G;) is a subgraph of H with V(7(G;)) = {n(v) : v € V(G;)}
and E(r(G;)) = {n(u)m(v) : wv € E(G;)}. An ODC G of H is cyclic (CODC) if the
cyclic group of order |V (H)| is a subgroup of the automorphism group of G, the set of all
automorphisms of G; otherwise it is noncyclic.

For results on ODCs of graphs, see [3], a survey by Gronau et al.
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Consider the complete graph K,, = Circ(n;{1,2,3,..., L%J }). Recall that: given a
graph G = (V| FE) with n — 1 edges, a 1 mapping ¢ : V — Z, is an orthogonal labelling
of G if:

(i) for every £ € {1,2,..., L"T_lj }, G contains exactly two edges of length ¢, and exactly
one edge of length % if n is even, and

i) {r(0): ¢ € {L,2,..., %]} = {1.2,.... |52}

Following theorem of Gronau, Mullin and Rosa [2] relates CODCs of K, and orthogonal
labellings.

Theorem 1.1. [2] A CODC of K,, by a graph G ezists if and only if there exists an
orthogonal labelling of G.

Sampathkumar and Simaringa called an orthogonal labelling as an orthogonal
{1,2,..., L%J }-labelling and generalized it to an orthogonal {d1, da, . . ., di }-labelling, where
{dy,da,...,dy} is a sequence of positive integers with 1 < dj < dy < ... < dj < L%J .

L. Either n is odd orn is even and dy # 5 :

Given a subgraph G of Circ(n;{di,da,...,d;}) with 2k edges, a labelling of G, in Z,,
is an orthogonal {dy,ds, ..., dy}-labelling of G if:

(i) for every ¢ € {dy,ds,...,dx}, G contains exactly two edges of length ¢, and

(ii) {T(f) VNS {dl,dg, R ,dk}} = {dl,dg, cee ,dk}.

II. nis even and dj, = 5 :

Given a subgraph G of Circ(n;{di,ds,...,dy_1,5}) with 2k — 1 edges, a labelling of
G, in Zy, is an orthogonal {dy,ds, ..., dy_1, 5 }-labelling of G if:

(i) for every ¢ € {dy,ds,...,dr—1}, G contains exactly two edges of length ¢, and G
contains exactly one edge of length 5, and

(ii) {T’(g) VNS {dl,dg, .. ,dkfl}} = {dl,dg, .. ,dkfl}.

Following theorem, of Sampathkumar and Simaringa [4], is a generalization of Theorem
1.1. Proof of Theorem 1.2 is similar to that of Theorem 1.1.

Theorem 1.2. A CODC of Cire(n;{di,da,...,dr}) by a graph G exists if and only if
there exists an orthogonal {dy,da, ..., dy}-labelling of G.

In [5] Sampathkumar and Srinivasan have completely settled the existence problem of
CODCs 4regular circulant graphs by any graph G with 4 edges,

In [6] Sampathkumar and Srinivasan have completely settled the existence problem of
CODCs 5regular circulant graphs by any graph G with 5 edges,
In [7], Sampathkumar and Srinivasan have completely settled the existence problem of
CODCs of 6regular circulant graphs by trees. In this paper we have completely settled
the existence problem of CODCs of 6regular circulant graphs by ten acyclic disconnected
graphs. Recall that, for ODCs of 6-regular circulant graphs by a graph G, G has to have
six edges.

Throughout the article we make use of the usual notations:

K, for the complete graph on n vertices,

K, for the complete bipartite graph with independent sets of sizes m and n,

Ky no,...n,, for the complete k-partite graph in which partite sets are of sizes n1,no,...,ng,

P, for the path on n vertices,

C,, for the cycle on n vertices,

LG for ¢ disjoint copies of G and

G + H for the disjoint union G U H of G and H.
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Let ni,n9,...,n., r > 1, be integers, ny, n, > landn; > 0fori € {2,3,...,r —1}.
The caterpillar Cy(n1,n2,...,n,) is the tree obtained from the path P, := zixz9 ... x,
by joining vertex z; to n; new vertices, i € {1,2,...,7}.

Other terminology not defined here can be found in [1].

2. SECTION 2

Letl < dy < dy < ds < VLT_IJ , and G be any simple acyclic disconnected graph with
six edges. Then G e {GKQ, P3s+4K5, 2P3+ 2K, K1,3+3K2, Py+3K5, 3P3, Py+ P3+ Ko,
Ky 3+P3+ Ky, Ps+2Ko, K1 4+2Ky, C2(1,2)+2K5, 2Py, K1 3+Py, 2K 3, Ps+Ps, K1 4+ D5,
C2(1,2) + Ps, Ps + Ka, C3(1,0,2) + K, C3(1,1,1) + K, C2(1,3) + K2, Ca(2,2) + Ko,
K 5+ Ks}. In this section, we find a CODC of the circulant graph Circ(n; {d, d2,d3}) by
G, where G € {K1 4+ 2Ky, K15+ Ko, K13+ Py,2K; 3}. By Theorem 1.2, we have to find
a  mapping ¢ : V(G) — Z, such that G contains two edges of length dy, two edges of

length da, two edges of length ds, and {r(dy),r(d2),r(d3)} = {di,d2,d3}.

Theorem 2.1. Let n > 9. A CODC of Circ(n;{d1,d2,ds}) by K14+ 2Ky exists if and
only lf <d17d27 d3) ¢ {(%7 27717 3771)7 (%7 %7 %L)}

Proof: First assume that (di,da,ds) ¢ {(Z,22,32), (%, 2,30},
Case 1. dy # 2d;.

Edges of length d; are {d3—d;,ds} and {d3—d; +dz,d3+ds}; ones of dy are {d3 —dz, d3}
and {dg—d2+d1, d3+d1}; and ones of d3 are {0, dg} and {dg, 2d3}. ’I“(dl) = dg, T(dQ) = dl,
and T(dg) = d3.

Case 2. dy = 2d;.
Subcase 2.1. ds # 3d;.

Edges of length d; are {n — ds,n — ds + d1} and {0,d;}; ones of 2d; are {n — 2d;,0}
and {0, 2d; }; and ones of d3 are {n — dy,ds — di} and {0,ds}. r(d1) = ds, r(2d1) = 2d;,
and r(d3) = dj.

Subcase 2.2. d3 = 3d;.

For (di,ds,ds) # (45, %,3%), edges of length dy are {n — dy,0} and {0,d;}; ones of
2d; are {0,2d;} and {3d;,5d;}; and ones of 3d; are {n — 5d;,n — 2d;} and {n — 3dy,0}.
r(di) = di, r(2d1) = 3di, and r(3dy) = 2d;. (If either n —dy = 5dy or n — 5d; = dy,
then d3 = 3d; = %, a contradiction.) (If either n — 2d; = 5dy or n — 5d1 = 2dj, then
(d1,dp,d3) = (di,2dy,3dy) = (%,%,32), a contradiction.) (If either n — 3d; = 5d;
or n— 5dy = 3dy, then (di,da,d3) = (di,2dy,3d1) = (%,%,3%), a contradiction.) (If
n —5dy = 5dy, then (di,dz,d3) = (di,2d1,3d1) = ({5, %, 5), a contradiction.)

For (dy,da,ds) = ({5,%2,3%), edges of length 7% are {0, 75} and {32, 12}; ones of % are

00l3

n
4
)

10° 57 10 10° 10
{%",O} and {0,%}; and ones of ?{—ﬁ are %, %} and {7—’8,0}. r(ln—o) = %, 7‘(%) = %, and
r(?ﬂ) - n
10 10
Conversely, assume that (di,ds,d3) € {(%, 27”, 37"), (%1 3@n)} Suppose there exists
a CODC of Circ(n;{di,d2,ds}) by K14 + 2K3. As the edge set of K;4 + 2K3 cannot
be partitioned into subsets inducing subgraphs isomorphic to Ps, r(d;) = d; for every

i € {1,2,3} is impossible; again as the edge set of K4 + 2K3 cannot be partitioned
into subsets inducing subgraphs isomorphic to 2K, r(d;) # d; for every i € {1,2,3} is
impossible. Hence, (d;) = d;, v(d;) = dj and r(dy) = d; for {i,5,k} = {1,2,3}. We
consider two cases and three subcases in each.

Case 1. (dy,dy,d3) = (%,22,32).
Subcase 1.1. r(d1) = di, r(d2) = ds and r(d3) = da.

Without loss of generality assume that the edges of length Z are {%2,0} and {0, Z}. The
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edge of length 2* incident at 0 is either {0, 2} or {0, 22}. By symmetry, assume that it
is {0, 22}, As r(%) = 32, the edge of length 22 not incident at 0 is {22, 52}, This forces
the edge of length 22 incident at 0 is {0, %*}. As r(32) = 22, there is no edge of length
37” not incident at 0, a contradiction.

Subcase 1.2. r(dy) = ds, r(d2) = d2 and r(d3) = di.

Without loss of generality assume that the edges of length 27" are {57", 0} and {0, 27” .
The edge of length 2 incident at 0 is either {0, 2} or {0, %*}. By symmetry, assume that
it is {0, 2}. As r(Z) = 22, the edge of length Z not incident at 0 is {22, %2}. This forces
that there is no edge of length 37” incident at 0, a contradiction.

Subcase 1.3. r(d1) = da, r(d2) = di and r(d3) = ds.

Without loss of generality assume that the edges of length 37” are {47”, 0} and {0, 37" .
The edge of length Z incident at 0 is either {0, Z} or {0, 621 By symmetry, assume that
it is {0, 2}. As r(2) = 22, the edge of length 2 not incident at 0 is {22, %2}. This forces
the edge of length 22 incident at 0 is {0, 22}. As r(22) = 2, there is no edge of length 22
not incident at 0, a contradiction.

Case 2. (dy,da,d3) = (5%, %,%”).
Subcase 2.1. r(dy) = di, r(d2) = dz and r(d3) = ds.

Without loss of generality assume that the edges of length % are {Z*,0} and {0, %}.
The edge of length % incident at 0 is either {0, %} or {0, ??T"} By symmetry, assume that
it is {0,2}. As r(2) = 32 the edge of length 2 not incident at 0 is {32, 22}. This forces
that there is no edge of length %" incident at 0, a contradiction.

Subcase 2.2. r(d1) = ds, r(d2) = dp and r(d3) = d;.

Without loss of generality assume that the edges of length % are {2%,0} and {0, %}.
The edge of length % incident at 0 is either {0, 5} or {0, ™1 By symmetry, assume that
it is {0, 2}. As 7(%) = 32, the edge of length 2 not incident at 0 is {32, 2}. This forces
the edge of length %" incident at 0 is {0, %”} As r(%”) = §, there is no edge of length %”
not incident at 0, a contradiction.

Subcase 2.3. r(d1) = dg, r(d2) = di and r(d3) = ds.

Without loss of generality assume that the edges of length 22 are {22,0} and {0, 22}.
The edge of length § incident at 0 is either {0, 5} or {0, %”} By symmetry, assume that
it is {0, 2}. As 7(2) = 2, the edge of length % not incident at 0 is {2, 2}, This forces
the edge of length % incident at 0 is {0, 7}. As r(%) = §, there is no edge of length § not
incident at 0, a contradiction.

This completes the proof.

Theorem 2.2. Let n > 8. There is no CODC of Circ(n;{di,dz,ds}) by K15+ Ko.

Proof: Suppose a CODC of Circ(n;{dy,da,ds}) by K15 + Ko exists. If r(d;)) = d;
for every ¢ € {1,2,3}, then the edge set of K;5 + K> can be partitioned into subsets
each inducing a subgraph isomorphic to P, which is impossible. If r(d;) # d; for every
i € {1,2,3}, then the edge set of K5+ K3 can be partitioned into subsets each inducing
a subgraph isomorphic to 2Ky, which is again impossible. Hence, r(d;) = d;, r(d;) = di
and r(dy) = dj, where {i,j,k} = {1,2,3}. Consequently, the edge set of K 5+ K3 can be
partitioned into three subsets one inducing a subgraph isomorphic to P3 and the remaining
two each inducing a subgraph isomorphic to 2K5. As this partition is also impossible, we
have the required contradiction.
This completes the proof.
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Theorem 2.3. Let n > 8. A CODC of Circ(n;{di1,ds,ds}) by K13+ Py exists if and
only if (dy,dy, d3) ¢ {(%, 2, 30), (%, 2, 32)}.

Proof: First assume that (dy,d2,ds) ¢ {(%,22,30), (2,22, 32)},
Case 1. n # di+do+ds, n # dy +2ds, n # do + 2ds, and n # dy + do + 2ds.

Edges of length d; are {0,d; } and {ds, d1+d3}; ones of dy are {n—d2,0} and {0, d2}; and
ones of dg are {ds,2ds} and {ds + d1,2d3 + d1}. r(d1) = ds, r(d2) = dg and r(d3) = d;.
Case 2. dy # 2dy, d3 # 2di, n # 2dy + da, and n # 2dy + ds.

Edges of length dy are {n — 2dy,n — d1} and {d2 — 2d1,ds — d1}; ones of dy are {n —
dy,dy —dy} and {0, d2}; and ones of ds are {n —ds, 0} and {0,d3}. r(d1) = do, r(d2) = d1
and r(ds) = ds.

By Cases 1 and 2, we have to consider 16 possible cases.

Case 8. n = di +dy + d3 and dy = 2d;.

Edges of length d; are {n — dy,0} and {0, d; }; ones of dy are {n — d3, n — ds + da2} and
{0,d2}; and ones of ds are {n — 2d3,n — ds} and {n — 2d3 + do, n — ds + da}. r(d1) = dl,
r(d2) = d3andr(d3) = da. (If n—dy = n—d3+dz, then d3 = di+da, and hence d3 = 7,
a contradiction.) (If n—2ds = da, then n = dy+2ds, a contradiction ton = dj+da+ds.)
(If n — 2ds = di, then n = dy + 2d3, a contradiction to n = dy + d2 + d3.)

Case 4. n = dy + 2d3 and dy = 2d;.

For (di,dz,d3) # (%, %”, %"), edges of length d; are {n — dy,0} and {0, d;}; ones of
dy are {da,2ds} and {ds + ds,2ds + d3}; and ones of ds are {0,ds} and {da,ds + ds}.
T(dl) = dl, T(dg) = d3 and T(dg) = dg. (If d3 = 2d2, then (dl,dg,dg) = (%, %,%)) (If
n—d; = 2dy, then n = dj + 2ds, a contradiction to n = dj +2ds.) (If n —dy = da + ds,
then n = d; + da + d3, a contradiction to n = dj + 2d3.) (If n —dy = 2da + d3, then
n = dy+2dy+ds. Asn = dy +2ds, d3 = 2dy, and hence (dy,ds,ds3) = (2,2, 4)) (If
n = 2ds +ds, then as n = dy + 2d3, dy +d3 = 2dz, and hence (d1,dz,d3) = (%, 27", 37”),
a contradiction.) (If n 4+ dy = 2ds + d3, then n = —dj 4+ 2dy + d3. As n = d; + 2ds,
2dy = 2d; + ds, and hence d3 = 2d;, a contradiction to do = 2d;.)

For (di,ds,ds) = (2,2, 4), edges of length 2 are {, '} and {&*,0}; ones of 2 are

{59”, ™} and {0, %'}; and ones of 4 are {0, 4} and {2,202} r(2) = 22, (&) = 45‘ and

) = 3
Case 5. n = dy + 2d3 and dy = 2d;.

For (di,ds,ds) # (45,32, %), edges of length dy are {n — d;,0} and {0,d;}; ones of
dy are {dg,2d2} and {d2 + ds,2ds + ds}; and ones of d3 are {0,d3} and {da,ds + d3}.
T(dl) = dl, T(dg) = d3 and T<d3) = dg. (Ifdg = 2d2, then (dl,dg,d?,) = (%,%,%)) (If
n—dy = 2dg, then n = dj +2ds < do+2d3 = n, a contradiction.) (If n—d; = do +ds,
then n = di + do + ds, a contradiction to n = do + 2d3.) (If n — d; = 2dy + ds, then
n = di +2dy +d3. As n = do + 2d3, d3 = dy + do, and hence (dy,dy,ds3) = (&,22, 30,

8 8 8
a contradiction.) (If n = 2dy + ds, then as n = ds + 2d3, do = d3, a contradiction.)
(Ifn—l—dl = 2dy +d3, then n = —di; +2dy +d3. Asn = dy + 2d3, d3 = dy — dy, a

contradiction.)
For (dyi,ds,d3) = (&,2%, 4n) edges of length {5 are {10,0} and {32 4% ones of 2

3

10° 10° 10 4 8 10’%}0 9 10

n n n n n n

are {0, 1O}an(21{10, 3n1: and ones of % are {12, 10}a d{%. 0} r(Z) = 2, r(%) =L
and r(f2) = 22.

Case 6. n = dy + do + 2d3 and do = 2d;.

For (di,ds,ds) # (%,%, 3%, edges of length d; are {n — dy,0} and {0, d; }; ones of do
are {n—ds, n—ds+ds} and {0, d2}; and ones of d3 are {n —2ds,n —ds} and {n —2ds +da,
n —ds + dg} T(dl) = dq, T(dQ) = d3 and ’I“(dg) = do. (If n—dy = n—ds+ ds, then

d3 = dj +do, and hence (dl,dg,dg) = (g, %L, %L)) (Ifn—2d3 = dsy, thenn = dy+2d3, a
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contradiction to n = dy +ds + 2ds.) (If n —2ds = dy, then n = dj + 2d3, a contradiction
ton = dy +dy + 2d3.)
For (di,ds,ds) = (%,2%%,32), edges of length 2 are {¥, 22} and {0, Z}; ones of % are

9979 99
{0,223} and {32, 3}; and ones of 2 are {3, 2} and {%,0}. r(%) = 28, r(%) = 32
and r(3) = 2.

Case 7. n = di +dy + d3 and d3 = 2d;.

Edges of length d; are {n — dy,0} and {0, d; }; ones of dy are {n — d3, n — ds + da2} and
{0,d2}; and ones of d3 are {n —2d3,n — ds} and {n — 2ds + d2, n —d3 + da}. r(dy) = dj,
r(dy) = ds and r(d3) = dy. (If n —d; = n —ds + da, then d3 = di + d2, a contradiction
to ds = 2dy.) (If n —2ds = da, then n = dy + 2ds, a contradiction to n = dy + da + d3.)
(If n — 2ds = di, then n = d; + 2d3, a contradiction to n = dy + d2 + d3.)

Case 8. n = di + 2d3 and d3 = 2d;.

For (dy,do,ds) # (32,32 4%), edges of length d; are {n —dy,0} and {0,d; }; ones of do
are {dg, 2d2} and {d2+d3, 2d2+d3}; and ones of d3 are {0, dg} and {dg, d2+d3} T(dl) = dy,
r(dy) = ds and r(d3) = do. (If d3 = 2dy, then we have a contradiction to d3 = 2d;.) (If
n—d; = 2dg, thenn = dj +2dy < dy+2ds = n, a contradiction.) (If n —d; = da +ds,
then n = dj + da + ds, a contradiction to n = dj + 2d3.) (If n —d; = 2ds + d3, then
n = dy +2dy +ds. As n = dy + 2d3, d3 = 2dy, a contradiction to d3 = 2d;.) (If
n = 2ds+ds, then as n = dy +2ds, 2de = dj +ds, and hence (dy,ds,d3) = (%, 31’—73, A{—g).)
(If n+dy = 2dg + ds, then n = —d; +2dy+ds. Asn = dy + 2ds, d3 = 2(dy — dy). This
together with d3 = 2d; implies that do = 2d;, and hence d3 = dg, a contradiction.)

For (dy,dp,d3) = (32,32, 9%), edges of length 3% are {5 0} and {3, {2}; ones of 32

7 9 QE’E,ﬁ 4 6 9E3’ 2 Tov?o 3 2
are {1—8,0} and {%, 1—8}; and ones of 75 are {%,0} and {1—6‘, ot 7“(1—6”) = 10 r(%) = 1

and 7‘(%‘) = 3
Case 9. n = do + 2d3 and d3 = 2d;.

Edges of length dy are {n — d;,0} and {0,d;}; ones of dy are {ds,2d2} and {ds +
ds,2dy + d3}; and ones of ds are {0,d3} and {d2,ds + ds}. r(d1) = di, r(d2) = d3 and
r(ds) = da. (If d3 = 2ds, then we have a contradiction to ds = 2d;.) (If n—d; = 2ds, then
n = di+2dy < da+2ds = n,acontradiction.) (If n—d; = do+ds, then n = dy+da+ds,
a contradiction to n = da + 2ds.) (If n —dy = 2dy + d3, then n = d; + 2ds + d3. As
n = dg 4 2ds, d3 = di + da, a contradiction to ds = 2dy.) (If n = 2ds + d3, then as
n = dy+2ds, do = ds, a contradiction.) (If n+d; = 2ds +ds, then n = —dy + 2da + ds.
Asn = dy + 2ds, d3 = do — di, a contradiction.)

Case 10. n = di + do + 2d3 and d3 = 2d;.

Edges of length d; are {n — d;,0} and {0, d; }; ones of dy are {n — d3, n — ds + da2} and
{0,d2}; and ones of dg are {n — 2d3,n — ds} and {n — 2d3 + da, n —ds + da}. r(d1) = di,
r(dy) = ds and r(d3) = da. (If n —d; = n —ds + da, then d3 = di + d2, a contradiction
tods = 2d;i.) (If n—2d3s = da, then n = dy + 2d3, a contradiction to n = dj + da + 2d3.)
(If n — 2d3 = dj, then n = d; + 2d3, a contradiction to n = dy + da + 2d3.)

Case 11. n = dy +do + d3 and n = 2d; + d».
Then d3 = dj, a contradiction.
Case 12. n = di + 2d3 and n = 2dy + ds.

Then n = dy + 2d3 > 2dy + do = n, a contradiction.
Case 18. n = dy + 2d3 and n = 2dy + ds.

Then d3 = dy, a contradiction.

Case 14. n = di +do + 2d3 and n = 2d; + da.

Then n = dy 4+ do + 2d3 > 2dy + dys = n, a contradiction.
Case 15. n = di +do +ds and n = 2d; + ds.

Then dy = di, a contradiction.
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Case 16. n = di + 2d3 and n = 2dy + ds.
Then d3 = di, a contradiction.
Case 17. n = dy + 2d3 and n = 2dy + ds.

Then n = do + 2d3 > 2d; + d3 = n, a contradiction.
Case 18. n = di +do + 2d3 and n = 2dy + d3.

Then n = dy + ds + 2d3 > 2d; + d3 = n, a contradiction.

Conversely, assume that (di,ds, d3) € {(%,22,32), (2,22, 322)}. Suppose there exists a
CODC of Circ(n;{d1,d2,d3}) by Ki 3+ P;y. We consider two cases.

Case 1. (dy,dg,d3) = (%,27”,37")

Observe that: Circ(n;{%, 27", 37" ) = 2Kq; for each 4,5 € {1,2,3}, any two edges of
length % with rotation-distance %* are in the same component of 2 K7; and in the CODC
there exists ¢ € {1,2,3}, an edge € of K3, and an edge €¢” of P, such that the edges
¢/ and €’ are of same length d;. Consequently, in the CODC, all the edges of K13 + P4
are in the same component of % K7. Hence, we have a component of % K7 with at least 8
vertices, a contradiction.

Case 2. (dy,ds,d3) = (5%, %”, %")

Observe that: Circ(n; {2,22, 32}) ~ %Cim(8;{1,2,3}); for each 4,5 € {1,2,3}, any
two edges of length %” with rotation-distance % are in the same component of
2Circ(8;{1,2,3}); and in the CODC there exists i € {1,2,3}, an edge €’ of K;3, and
an edge e” of Py such that the edges ¢ and e¢” are of same length d;. Consequently, in
the CODC, all the edges of Kj 3+ Py are in the same component of §Circ(8;{1,2,3}).
Hence, the CODC of gCirc(8;{1,2,3}) by K13+ Py yields a CODC of Cire(8;{1,2,3})
by K13+ Py.

Now consider a CODC of Cire(8;{1,2,3}) by K13+ Py. If r(1) = 1, 7(2) = 2 and
r(3) = 3, then the edge set of K 34 P4 can be partitioned into subsets inducing subgraphs
isomorphic to P3, which is impossible. Thus we consider five subcases.

Subcase 2.1. r(1) = 1, r(2) = 3 and 7(3) = 2.

Let A = {{7,0},{0,1}}. Without loss of generality assume that the edges of length 1
are the edges of A. Let By = {{0,2},{3,5}}, B1 = {{1,3},{4,6}}, Bo = {{2,4},{5,7}}
and Bs = {{3,5},{6,0}}. The edges of length 2 are the edges of one of the sets By,
Bi, Bs, Bs. Let Cy = {{0,3},{2,5}}, C1 = {{1,4},{3,6}}, C2 = {{2,5},{4,7}} and
Cs = {{3,6},{5,0}}. The edges of length 3 are the edges of one of the sets Cy, C1, Ca, Cs.
Observe that, for any ¢,j € {0,1,2,3}, the subgraph induced by the edge set AU B; U C;
is not isomorphic to Kj 3 4 P4, a contradiction.

Subcase 2.2. r(1) = 2, r(2) = 1 and r(3) = 3.

Let A = {{0,1},{2,3}}. Without loss of generality assume that the edges of length 1
are the edges of A. Let By = {{27 4}5 {37 5}}7 Bs = {{37 5}> {47 6}}7 Bs = {{57 7}7 {6? O}}
and Bg = {{6,0},{7,1}}. The edges of length 2 are the edges of one of the sets B,
Bs, Bs, Be. Let C1 = {{1,4},{4,7}}, Cu = {{4,7},{7.2}}, Cs = {{6,1},{1,4}} and
C7 = {{7,2},{2,5}}. The edges of length 3 are the edges of one of the sets Cy, Cy, Cg, Cr.
Observe that, for any i € {2,3,5,6} and for any j € {1,4,6,7}, the subgraph induced
by the edge set A U B; U Cj is not isomorphic to K3 + Py, a contradiction.

Subcase 2.3. r(1) = 2, r(2) = 3and r(3) = 1.

Let A = {{0,1},{2,3}}. Without loss of generality assume that the edges of length 1 are
the edges of A. Let By = {{1,3},{4,6}}, Bo = {{2,4},{5,7}}, B3 = {{3,5},{6,0}},
By = {{4,6},{7,1}}, Bs = {{5,7},{0,2}} and By = {{7,1},{2,4}}. The edges of
length 2 are the edges of one of the sets By, B, Bs, By, Bs, B7. Let C1 = {{1,4},{2,5}},

CQ = {{275}’{376}}7 CS = {{376}7{47 7}}7 04 = {{47 7}7{5’0}}7 CS = {{5’0}7{671}}
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and Cg = {{6,1},{7,2}}. The edges of length 3 are the edges of one of the sets C1, Ca,
Cs, Cy, C5, Cs. Observe that, for any ¢ € {1,2,3,4,5,7} and for any j € {1,2,3,4,5,6},
the subgraph induced by the edge set A U B; U C}; is not isomorphic to Ki3 + Py, a
contradiction.

Subcase 2.4. r(1) = 3, r(2) = 1 and r(3) = 2.

Let A = {{0,1},{3,4}}. Without loss of generality assume that the edges of length 1 are
the edges of A. Let Bs = {{2,4},{3,5}}, Bz = {{3,5},{4,6}}, B4 = {{4,6},{5,7}},
Bs = {{5,7},{6,0}}, Bs = {{6,0},{7,1}} and By = {{7,1},{0,2}}. The edges of
length 2 are the edges of one of the sets Bq, Bs, By, Bs, Bg, B7. Let Cy = {{0,3},{2,5}},
Cy = {{27 5}a {47 7}}7 C3 = {{37 6}’ {5’ 0}}’ Cy = {{4’ 7}7 {67 1}}7 Cs = {{57 O}’ {77 2}}
and C7 = {{7,2},{1,4}}. The edges of length 3 are the edges of one of the sets Cp, Cs,
Cs, Cy, C5, C7. Observe that, for any i € {2,3,4,5,6,7} and for any j € {0,2,3,4,5,7},
the subgraph induced by the edge set A U B; U Cj is not isomorphic to K13 + Py, a
contradiction.

Subcase 2.5. r(1) = 3, r(2) = 2and r(3) = 1.

Let A = {{0,1},{3,4}}. Without loss of generality assume that the edges of length 1
are the edges of A. Let By = {{2,4},{4,6}}, Bs = {{3,5},{5,7}}, Bs = {{5,7},{7,1}}
and Bg = {{6,0},{0,2}}. The edges of length 2 are the edges of one of the sets By, Bs,
Bs, Bg. Let C1 = {{1,4},{2,5}}, Co = {{2,5},{3,6}}, C5 = {{3,6},{4,7}}, Cs =
{{47 7}7 {57 0}}7 Cs = {{57 0}7 {67 1}} Ce = {{67 1}7 {77 2}} and C7 = {{77 2}7 {07 3}}
The edges of length 3 are the edges of one of the sets Cy, Cy, C3, Cy4, C5, Cg, C7. Observe
that, for any ¢ € {2,3,5,6} and for any j € {1,2,3,4,5,6, 7}, the subgraph induced by
the edge set A U B; U Cj is not isomorphic to K7 3 + Py, a contradiction.

This completes the proof.

Theorem 2.4. Letn > 8. A CODC of Circ(n;{di,ds,ds}) by 2K 3 exists if and only if
(n,dg) = (3d1 + 3ds, 2d1 + dg)..

Proof: Suppose a CODC of Circ(n; {di,da,d3}) by 2K 3 exists. If r(d;) = d; for every
i € {1,2,3}, then the edge set of 2K 3 can be partitioned into subsets inducing subgraphs
isomorphic to Ps, which is impossible. If r(d;) = d;, r(d;) = di and r(dy) = d; with
{i,7,k} = {1,2,3}, then the edge set of 2K 3 can be partitioned into three subsets one
inducing a subgraph isomorphic to P3 and the remaining two each inducing a subgraph
isomorphic to 2K, which is again impossible. Hence, r(d;) # d; for every i € {1,2,3}.
Consequently, the edge set of 2K 3 can be partitioned into subsets inducing subgraphs
isomorphic to 2K»>. Also, each vertex of degree 3 in 2K 3 is incident with one edge of
length di, one edge of length do, and one edge of length ds. Without loss of generality,
assume that one vertex of degree 3 in 2K 3 is 0 and the edge of length d; incident at 0 is
{0,d1}. The edge of length da incident at 0 is either {0,d2} or {0,n — d2} and the edge of
length ds incident at 0 is either {0,ds} or {0,n — d3}. We consider four cases and in each
of the four cases we consider two subcases.

Case 1. Edges incident at 0 are {0,d;}, {0,d2} and {0, ds}.

Subcase 1.1. r(d1) = dg, r(d2) = ds and r(d3) = dj.

Then the edges of lengths dj, d2 and d3 not incident at vertices in {0,d;,ds,ds} are,
respectively, {n — do,n + dy — da}, {n —ds,n+dy — ds} and {n — di,ds — d; }.

First, consider the two adjacent edges {n — da,n + d; — do} and {n — dy,ds — di}. As
n—dy % n—dy,n—ds 7& d3—d; and n+d; —do 75 d3 —dyi, we have n+dy —ds = n—dy,
and hence dy = 2d;.

Next, consider the two adjacent edges {n — d3,n + do — d3} and {n —d;,ds — d;}. As
n—d3 75 n—dl, n—dg 75 d3—d1 and n+d2—d3 75 dg—dl, we have n+d2—d3 = n—dl,
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and hence d3 = d; + da, i.e., d3 = 3d;.

Now the edges incident at 0 are {0, d; }, {0,2d;} and {0, 3d; }; and the edges not incident
at 0 are {n —2dy,n —d1}, {n —3d1,n —d1} and {n — dy,2d;}; a contradiction to the fact
that 2d; belongs to both K 3’s.

Subcase 1.2. r(d1) = ds, r(d2) = di and r(d3) = da.

Then the edges of lengths dj, d2 and d3 not incident at vertices in {0,d;,ds,ds} are,
respectively, {n —ds,n +dy —ds}, {n —di,d2 — di} and {n — da,d3s — da}.

First, consider the two adjacent edges {n — dy,ds — d1} and {n —ds,n + d; — ds}. As
n*dl 75 n*dg, dQ*dl 75 Tl*dg and dg*dl 7’5 Tlerl*dg, we have ’I’L*dl = ’I’L+d1*d3.

Next, consider the two adjacent edges {n — da,ds — da} and {n — ds,n + d; — ds}. As
n—dg 75 n—dg, d3—d2 75 n—d3 and d3—d2 7& Tl‘l—dl—dg, we have n—dg = n+d1—d3.
Consequently, n — dy = n — do, i.e., di = da, a contradiction.

Case 2. Edges incident at 0 are {0,d;}, {0,d2} and {0,n — d3}.
Subcase 2.1. r(dy) = da, r(d2) = dz and r(d3) = d;.

Then the edges of lengths dj, dy and ds not incident at vertices in {0,d;,ds, n — d3}
are, respectively, {n — da,n + d; — da}, {ds,ds + d2} and {n — ds — di,n — d1 }.

First, consider the two adjacent edges {n—ds,n+dy —ds} and {n—ds—dy, n—d;}. As
n—dg 75 n—dl, n—d2 75 n—d3—d1 and n—dg—dl 7’5 Tl+d1 —dQ (i.e., d2 75 d3+2d1),
we have n — dy = n + dy — do, and hence, dos = 2d;.

Next, consider the two adjacent edges {n — da,n + di — d2} and {ds,ds + da}. As
n—ds # ds and n+dy —dy # ds, we have either n—ds = ds+ds or n+dy —dy = ds+ds.
Hence, we have either n = 2dy +d3 or n = —dq + 2ds + d3. As do = 2d;, we have either
n = 4d; +ds orn = 3dy +d3. As do = 2d; and n —d3 — d; are vertices of disjoint K 3’s,
they are not equal, and hence n # 3d; + ds. Thus, n = 4dy + ds.

Finally, consider the two adjacent edges {ds,ds + da2} and {n — ds — dy,n — di}. As
n —d; # ds, we have one of the following: n —dy = ds+ds, n —ds —d; = ds and
n—ds —dy = d3+ ds. As do = 2d;, we have one of the following: n = 3d; + ds,
n = d; +2ds and n = 3d; 4+ 2d3. As do = 2d; and n — ds — d; are vertices of disjoint
K 3’s, they are not equal, and hence n # 3d; + d3. Thus, we have either n = d; 4 2d3 or
n = 3di1 +2dsz. If n = 3dy +2d3, then as n = 4d; + d3, we have d; = d3, a contradiction.
Thus, n = dy + 2ds.

n = 4di +d3z and n = dy + 2d3 implies that d3 = 3d; and n = 7d;. Now n—dg = 4d;
and n + dy — da = 4d; are vertices of disjoint K7 3’s, a contradiction.

Subcase 2.2. r(d1) = ds, r(d2) = di and r(d3) = da.

Then the edges of lengths dj, dy and ds not incident at vertices in {0,d;,ds, n — d3}
are, respectively, {ds,d; + ds}, {n — di,ds — d1} and {n — ds — d3,n — da}.

First, consider the two adjacent edges {ds,d1+ds} and {n—dy,ds—d1}. As ds # n—dy,
ds # do —dy and di + ds 75 ds — d1, we have d3 +d; = n —di, and hence n = 2d; + ds.

Next, consider the two adjacent edges {ds,d; + d3} and {n — do — d3,n — da}. As
ds # n — ds, we have one of the following: d3 = n —dy —ds, di +ds = n — ds — ds, and
di + d3 = n — do; i.e., we have one of the following: n = ds + 2d3, n = di + ds + 2d3,
and n = dl +d2+d3.

If n = dy + 2d3, then as n = 2dy + d3, we have n = 2d; +dg < dy +2d3 = n, a
contradiction. If n = dj + ds + 2d3, then again as n = 2d; +ds, we have n = 2d; +d3 <
di +ds +2d3 = n, a contradiction. If n = d; + d2 + d3, then once again as n = 2d; + ds,
we have di = ds, a contradiction.

Case 3. Edges incident at 0 are {0,d;}, {0,n — da} and {0, ds}.
Subcase 3.1. r(dy) = da, r(da) = ds and r(d3) = d;.
Then the edges of lengths di, do and d3 not incident at vertices in {0,dy, n — da,ds}
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are, respectively, {d2,d1 + da}, {n — ds — da,n — d3} and {n — dy,d3 — d; }.

First, consider the two adjacent edges {n — ds — d2,n — ds} and {n — dy,ds — d;}. As
n—ds # n—dy,n—ds # d3—dy and n—ds—do # n—dy, we have n—ds—ds = d3—dy,
and hence n = dy + 2d3 — d;.

Next, consider the two adjacent edges {do2,d; + d2} and {n — d3 — da,n — d3}. As
ds # n — ds, we have one of the following: do = n —d3 —do, di +ds = n —ds — do, and
di +ds = n — ds; i.e., we have one of the following: n = 2ds + d3, n = di + 2do + d3,
and n = dy + da + ds.

If n = 2dy + ds3, then as n = dy + 2d3 — d1, we have d3 = d; + ds, a contradiction
to the fact that d3 and di + dz are vertices of disjoint Kj3’s. Thus, we have either
n =d; +2dy+ds orn = dy + ds + ds.

Finally, consider the two adjacent edges {dz, d1+d2} and {n—d;,d3—d; }. As dy # n—djy,
we have one of the following: do = d3 —di, d1 +doy = n—dy, and dy +do = d3 —dy; ie.,
we have one of the following: d3 = di + do, n = 2d; + do, and d3 = 2d; + ds.

As d3 and dy + dy are vertices of disjoint K1 3’s, d3 # di + d2. Thus, we have either
n = 2di + ds or dg = 2dy + do.

Ifn = dy+2dy+d3s and n = 2dy + do, thenn = 2d; +dy < di +2ds +ds = n, a
contradiction.

Ifn = di+dy+d3sand n = 2d; +dy, thenn = 2dy +do < dy +do+ds = n, a
contradiction.

If n = di +do +ds and d3 = 2dy + ds, then as n = ds + 2d3 — dy, we have d3 = 2dj,
a contradiction to dg = 2d; + ds.

Hence, n = dy 4+ 2dy + d3 and d3 = 2d; 4+ do. Consequently, n = 3d; + 3ds and
ds = 2d; + ds.

Subcase 3.2. r(dy) = ds, r(d2) = dy and r(d3) = da.

Then the edges of lengths di, d2 and d3 not incident at vertices in {0,dy, n — da2,ds}
are, respectively, {n —ds,n —ds + di}, {n —dy — da,n — d1} and {da,d2 + ds}.

First, consider the two adjacent edges {n — d3,n — d3 + di} and {d2,d2 + d3}. As
n—ds # do and n—ds—+d; # do, we have either n—ds = do+ds or n—ds+d; = do+ds.
Hence, we have either n = dy + 2d3 or n = ds + 2d3 — d;.

Next, consider the two adjacent edges {n—ds,n—ds+d;} and {n—d; —da, n—d;}. As
n—ds # n—dy, we have one of the following: n—d; = n—dj—ds, n—ds+d; = n—d;—do,
and n—dsz+d; = n—d;. Hence, we have one of the following: d3 = di+ds, d3 = 2dy+da2,
and d3 = 2dy. If d3 = dy + ds, then n — dy and n — d3 + d; = n — dy are vertices of
disjoint K1 3’s, a contradiction. Thus, we have either d3 = 2d; + d2 or d3 = 2d;.

Finally, consider the two adjacent edges {n — dy — da,n — d1} and {da,ds + d3}. As
n —dy # dz, we have one of the following: n —dy = do +ds, n — d1 — da = do, and
n—dy —ds = do+ds. Hence, we have one of the following: n = dy+do+ds, n = di+2ds
and n = di + 2dy + ds. If n = dy + do + ds, then d3 and n — dy — dy = d3 are vertices of
disjoint K 3’s, a contradiction. Thus, we have either n = dy +2ds or n = dy + 2ds + d3.

We consider all the eight possibilities.

If n = dy 4+ 2d3, either d3 = 2d; + dy or d3 = 2dy, and n = dy + 2ds, then n =
dy + 2ds < do + 2d3 = n, a contradiction.

If n = dy + 2ds, either d3s = 2d; + dy or d3 = 2d;, and n = dj + 2ds + ds, then
d3 = di + do, a contradiction to either d3 = 2d; 4+ dy or d3 = 2d;.

If n = do +2d3 —dy, d3 = 2d1 +do, and n = dq + 2ds, then n > 2d3 = 4d; + 2dy >
dy + 2ds = n, a contradiction.

If n = do 4+ 2d3 — dq, d3 = 2d1, and n = dy + 2ds, then d3 = ds, a contradiction.

If n = do +2d3 —dy, d3 = 2di1, and n = dy + 2ds + ds, then d3 = 2d; + do, a
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contradiction to d3 = 2d;.

Hence, n = dy 4+ 2d3 — dy, d3 = 2di + do, and n = dy + 2d2 + d3. Consequently,
n = 3d1 + 3de and d3 = 2dy + ds.

Case /4. Edges incident at 0 are {0,d;}, {0,n — d2} and {0,n — ds}.
Subcase 4.1. r(d1) = dg, r(d2) = ds and r(d3) = dj.

Then the edges of lengths dj, do and ds not incident at vertices in {0, d;, n —ds,n —d3}
are, respectively, {d2,d; + da}, {d3 — d2,d3} and {n — dy — d3,n — d; }.

First, consider the two adjacent edges {da,d; + d2} and {d3 — do,d3}. As da # d3, we
have one of the following: do = d3 — ds, d1 + do = d3 — ds, and d; + do = ds3. Hence, we
have one of the following: d3 = 2ds, d3 = dy + 2do, and d3 = dy + ds. If d3 = di + da,
then dy and d3 — do = dy are vertices of disjoint K1 3’s, a contradiction. Thus, we have
either d3 = 2ds or d3 = di + 2ds.

Next, consider the two adjacent edges {da,d; + da2} and {n — d; — d3,n — d}. As
ds # n — dy, we have one of the following: do = n—dy —ds, di +ds = n—d; — ds3, and
di+ds = n—dy. Hence, we have one of the following: n = dy+ds+ds, n = 2d; +ds+ds,
and n = 2dy +ds. If n = dy +ds 4+ ds, then n — ds = dy + ds and dy + do are vertices of
disjoint K1 3’s, a contradiction. Thus, we have either n = 2dy +dz +d3 or n = 2d; + d».

Finally, consider the two adjacent edges {ds — da,d3} and {n — dy — ds,n — d1}. As
ds—ds # n—dy and d3 # n—dy, we have either ds—ds = n—dy—ds or d3 = n—d; —ds.
Hence, we have either n = dy — dy + 2d3 or n = dy + 2ds.

We consider all the eight possibilities.

If dg = 2ds, n = 2d; +dy +ds, and n = dy — do + 2d3, then d3 = di + 2do, a
contradiction to d3 = 2ds.

If d3 = 2dy, n = 2dy + do + d3, and n = dy + 2d3, then d3 = dq + do, a contradiction
to d3 = 2d2.

If d3 = 2do, n = 2dy + do, and n = dy — dy + 2d3, then 2dg = dqi + 2do, and this
together with d3 = 2dy implies that d3 = d;, a contradiction.

If n = 2dy1 +ds, n = di + 2ds, and either d3 = 2dy or d3 = di + 2ds, then n =
2d1 + do < di 4+ 2d3 = n, a contradition.

Ifds = di4+2de, n = 2d1+do+ds3, and n = dy+2ds, then d3 = di+ds, a contradiction
to ds = dyi + 2ds.

If d3 = di +2de, n = 2d1 + do, and n = di — do + 2ds, then 2ds = dy + 2do, a
contradiction to d3 = dj + 2do».

If d3 = di +2ds, n = 2dy + ds + d3, and n = di — do + 2d3, then d3 = di 4+ 2d2 and
n = 3di +3dz. As d3 < §, 2d3 < n, and hence 2(d; + 2d2) < 3d; + 3da.

This implies that do < dj, a contradiction.
Subcase 4.2. r(d1) = ds, r(d2) = dy and r(d3) = da.

Then the edges of lengths d;, do and ds not incident at vertices in {0, d;, n —ds,n —d3}
are, respectively, {ds,d; + ds}, {n —di — da,n — d1} and {n + ds — ds,d2}.

Consider the two adjacent edges {ds,d; +ds} and {n+dy—ds3,d2}. As d3 # n+dy—ds,
ds # do, and dy + d3 75 ds, we have di +d3 = n+ds — ds, and hence n = dy — ds + 2d3,
a contradiction to d; < do and 2d3 < n.

Conversely, assume that (n,ds) = (3d; + 3d2, 2d; + d2). Edges of length d; are {0,d;}
and {da,d; + da}; ones of dy are {d; + do,d; + 2ds} and {3d; + 2d2,0}; and ones of
d3 = 2d; + dsy are {2d1 + 3ds, dy + d2} and {072d1 + d2}. T(dl) = do, ?”(dg) = 2dy + do
and 7(2d, + d2) = d;.

This completes the proof.
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