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REVAN WEIGHTED PI INDEX ON SOME PRODUCT OF GRAPHS

M. PRIYADHARSHINI 1, P. KANDAN2,∗, E. CHANDRASEKARAN 3, A. JOSEPH KENNEDY 4, §

Abstract. In chemical graph thoery, PI index is an additive topological index which
has been used to measure the characteristics of chemical compounds. In this paper we
introduce the weighted version of PI index of graph called the Revan Weighted PI index
and we have obtained it for the hierarchical product of graphs, cartesian product, subdi-
vision and join of two graphs. Also we have derived this index for some molecular graphs.
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1. Introduction

Let G = G(V,E) be the graph where V = V (G) and E = E(G) denotes the vertex
set and edge set of the graph G. Throughout this paper, the graphs considered here are
simple and connected. A molecular graph is a graph such that its vertices correspond to
the atoms and the edges to the bonds.

A vertex x ∈ V (G) is said to be equidistant from the edge e = uv of G if dG(u, x) =
dG(v, x), where dG(u, x) denotes the distance between u and x in G; otherwise, x is a non
equidistant vertex. The degree of a vertex x ∈ V (G) is number of edges incident with x
and is denoted by dG(x). Let ∆(G) and δ(G) denotes the maximum and minimum degree
of the vertices of G respectively.

For an edge e = uv ∈ E(G), the number of vertices of G whose distance to the vertex u
is less than the distance to the vertex v in G is denoted by nGu (e) = nu(e,G); analogously,
nGv (e) = nv(e,G); is the number of vertices of G whose distance to the vertex v in G is
less than the distance to the vertex u; the vertices equidistant from both the ends of the
edge e = uv are not counted.
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Graph operations produce new graphs from the given simpler graphs. Frucht and Harary
[6] introduced the corona of two graphs. In Graph theory, the operation of graphs play an
important role in the decomposition of graphs into isomorphic subgraphs. Graph theory
provided variety of tools to the chemist [7]. The tools for chemical graph theory focuses on
topological indices of chemical graphs. These topological indices have many applications
in QSPR and QSAR as well see [4].

The Padmakar-Ivan(PI) index is a topological descriptor. The two topological indices
namely the PI index and weighted PI index of G denoted by PI(G) and PIw(G) respec-
tively, are defined as follows

PI(G) =
∑

e=uv∈E(G)

(
nGu (e) + nGv (e)

)
PIw(G) =

∑
e=uv∈E(G)

(dG(u) + dG(v))
(
nGu (e) + nGv (e)

)
.

The PI index [20] of the graph G is a topological index related to equidistant vertices.
Illić et al. [8] introduced weighted vertex PI index to increase the diversity of bipartite
graphs, that is for bipartite graphs,we have nGu (e) + nGv (e) = |V (G)| = n where n denotes
the number of vertices in G and therefore the diversity of the PI index is not satisfying. For
a graphG with n vertices andm edges, the inequality that PI(G) ≤ nm holds and the same
equality holds if and only if G is bipartite. Khadikar et al. [11] were the first to introduce
edge Padmakar – Ivan index of graphs. K. Pattabiraman et al. [19] studied the vertex
and edge Padmakar – Ivan indices of the generalized hierarchical product of graphs. On
this extension by K. Pattabiraman et al. [16–18] developed the exact formula for weighted
PI index of graphs, corona product and Szeged indices of some graph operations. To
continuation of work on weighted version of PI index, Kandan et al. [9, 10] developed the
Revan Weighted PI and Szeged index of graphs.

The Revan vertex degree of a vertex u in G is defined as rG(u) = ∆(G) + δ(G)−dG(u).
Recently [13] Kulli’s concept in graph theory: the first and second Revan indices of a graph
G are defined as R1(G) =

∑
uv∈E(G) (rG(u) + rG(v)) and R2(G) =

∑
uv∈E(G) (rG(u)rG(v))

and derived the exact value for the various molecular structure see [14, 15]. Motivated
by the invariants like the Weighted PI indices and Revan indices, In [10] Kandan et al.
introduced the Revan Weighted PI index PIr(G) of a graph G as

PIr(G) =
∑

e=uv∈E(G)

(rG(u) + rG(v))
(
nGu (e) + nGv (e)

)
.

The hierarchical product were defined by Barriere et al. [2, 3]. Let G and H be two
connected graphs and U ⊆ V (G) i.e., U be a non empty subset of V (G). Then the
Hierarchical Product of G and H denoted by G(U) uH is the graph with the vertex set
V (G)×V (H) and any two verices (u, v) and (u′, v′) are adjacent if and only if u = u′ ∈ U
and (v, v′) ∈ E(H) or (u, u′) ∈ E(G) and v = v′.

The cartesian product of graphs G and H, denoted by G�H is the graph with vertex
set V (G�H) = V (G) × V (H) and any two vertices (u, x) and (v, y) are adjacent if and
only if u = v ∈ V (G) and (x, y) ∈ E(H) or x = y ∈ V (H) and (u, v) ∈ E(G). It is clear
that G(U) uH is isomorphic to G�H, if U = V (G) then G�H = G(U) uH.

In this paper, we obtain the Revan Weighted PI index of hierarchical product, of graphs
using the two already known topological indices,namely the PI index and Weighted PI
index.Likewise for cartesian product, subdivision and join of two graphs. In addition, we
present explicit results for different classes of molecular graphs.
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2. Revan Weighted PI index of G(U) uH

Let G be a graph. The distance between u and v is denoted by dG(u, v) where u, v ∈
V (G) and U ⊆ V (G) is a U − V path in G containing some vertex w ∈ U (vertex w
could be the vertex u or v). The distance between u and v through U is the length of the
shortest path between u and v through U and is denoted by dG(U)(u, v). Note that if one
of the vertices u and v belongs to U , then dG(U)(u, v) = dG(u, v).

A vertex a ∈ V (G(U)) is said to be equidistant from e = uv ∈ E(G(U)) through U in
G(U), if dG(U)(u, a) = dG(U)(v, a). For an edge e ∈ G(U), let NG(U)(e) denote the number
of equidistant vertices of e through U in G(U). Then PIr(G(U)) is defined as follows,

PIr(G(U)) =
∑

e=uv∈E(G)

(
rG(U)(u) + rG(U)(v)

) (
nG(U)
u (e) + nG(U)

v (e)
)

For an edge e = uv ∈ E(G), let TG(e, u) be the set of vertices closer to u than v and
TG(e, v) be the set of vertices closer to v than u. That is TG(e, u) = {a ∈ V (G) | dG(u, a) <
dG(v, a)}, TG(e, v) = {a ∈ V (G) | dG(u, a) > dG(v, a)}.

Lemma 2.1. [18] Let G and H be graphs with U ⊆ V (G) then

(i). |V (G(U) uH)| = |V (G)| |V (H)| and |E(G(U) uH)| = |E(G)| |V (H)|+|E(H)| |U |.
(ii). The degree of the vertex (x, y) ∈ V (G(U) u H) is dG(U)(x) + φU (x)dH(y), where

φU denotes the characteristic function on the set U .

(iii). dG(U)uH((x, y)(x′, y′)) =

{
dG(U)(x, x

′) + dH(y, y′) if y 6= y′

dG(x, x′) if y = y′

Next we compute the Revan Weighted PI index of the hierarchical product of two
connected graphs G and H, expressed interms of the known indices, namely the PI index
and the Weighted PI index.

Theorem 2.1. Let G and H be two connected graphs and U be a non empty subset of
V (G). Then

PIr(G(U) uH) = 2(∆(G(U) uH) + δ(G(U) uH))[|U ||V (G)|PIv(H)

+|V (H)|2PIv(G(U))]−
[
2|V (G)|PIv(H)

(∑
ur∈U

dG(U)(ur)

)
+|U ||V (G)|PIw(H) + |V (H)|PIw(G)

+|V (H)|(|V (H)| − 1)PIw(G(U))

+2|E(H)|
∑

uiuk∈E(G)

(φU (ui) + φU (uk))
(
nGui

(e) + nGuk
(e)
)

+2|E(H)|(|V (H)| − 1)∑
uiuk∈E(G)

(φU (ui) + φU (uk))
(
nG(U)
ui

(e) + nG(U)
uk

(e)
)]
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Proof.

PIr(G(U) uH) =
∑

(u,v)∈E(G(U)uH)

(
rG(U)uH(u) + rG(U)uH(v)

)
(
nG(U)uH
u (e) + nG(U)uH

v (e)
)

PIr(G(U) uH) =
∑

(u,v)∈E(G(U)uH)

(∆(G(U) uH) + δ(G(U) uH)

−dG(U)uH(u) + ∆(G(U) uH) + δ(G(U) uH)

−dG(U)uH(v))
(
nG(U)uH
u (e) + nG(U)uH

v (e)
)

=
∑

(u,v)∈E(G(U)uH)

(2((∆(G(U) uH) + δ(G(U) uH)))
(
nG(U)uH
u (e) + nG(U)uH

v (e)
)

−
∑

(u,v)∈E(G(U)uH)

(dG(U)uH(u) + dG(U)uH(v))
(
nG(U)uH
u (e) + nG(U)uH

v (e)
)

= 2 (∆(G(U) uH) + δ(G(U) uH))
∑

(u,v)∈E(G(U)uH)

(
nG(U)uH
u (e) + nG(U)uH

v (e)
)

−
∑

(u,v)∈E(G(U)uH)

(dG(U)uH(u) + dG(U)uH(v))
(
nG(U)uH
u (e) + nG(U)uH

v (e)
)

= 2 (∆(G(U) uH) + δ(G(U) uH))PIv(G(U) uH)− PIw(G(U) uH)

Using [18] and [19], we have

PIr(G(U) uH) = 2 (∆(G(U) uH) + δ(G(U) uH)) [|U ||V (G)|PIv(H)

+|V (H)|2PIv(G(U))]−
[
2|V (G)|PIv(H)

( ∑
ur∈U

dG(U)(ur)

)
+|U ||V (G)|PIw(H) + |V (H)|PIw(G)

+|V (H)| (|V (H)| − 1)PIw(G(U)) + 2|E(H)|
∑

uiuk∈E(G)

(φU (ui)

+φU (uk))
(
nGui

(e) + nGuk
(e)
)

+ 2|E(H)| (|V (H)| − 1)∑
uiuk∈E(G)

(φU (ui) + φU (uk))
(
nG(U)
ui

(e) + nG(U)
uk

(e)
)]

�

In the above theorem, if we set U = V (G), we obtain the following corollary.

Corollary 2.1. Let G and H be connected graphs. Then

PIr(G�H) = 2(∆(G�H) + δ(G�H))(|V (H)|2PIv(G) + |V (G)|2PIv(H))

−(|V (H)|2PIw(G) + |V (G)|2PIw(H) + 4(|V (G)||E(G)|PIv(H)

+|V (H)||E(H)|PIv(G)))

Let G1, G2, · · ·Gn be graphs with vertex set V (Gi) and edge set E(Gi), 1 ≤ i ≤ n.

Denote by
n
�
i=1

Gi the cartesian product of graphs G1, G2, · · ·Gn. Clearly, |V (
n
�
i=1

Gi)| =
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n∏
i=1

|V (Gi)|. By induction on n, we have |E(
n
�
i=1

Gi)| =
n∏

i=1

|V (Gi)|
n∑

i=1

|E(Gi)|
|V (Gi)|

. Khalifeh et

al. [12] have proved PIv(
n
�
i=1

Gi) =

n∑
i=1

PIv(Gi)

n∏
j=1,j 6=i

|V (Gj)|2.

Now we shall prove the Revan Weighted PI index for n graphs.

Theorem 2.2. Let G1, G2, · · ·Gn be connected graphs. Then

PIr(
n
�
i=1

Gi) = 2

(
n∑

i=1

∆(Gi) +

n∑
i=1

δ(Gi)

)
n∑

i=1

PIv(Gi)

n∏
j=1,j 6=i

|V (Gj)|2

−
( n∑

i=1

PIw(Gi)

n∏
j=1,j 6=i

|V (Gj)|2

+4
n∑

i,j=1,i 6=j

PIv(Gi)|V (Gj)||E(Gj)|
n∏

k=1,i 6=k 6=j

|V (Gk)|2
)

Proof:

The proof is by induction on n. For n = 2, the proof follows from Theorem 2.1 and let
us assume that the result hold for n graphs. then

PIr(
n+1
�
i=1

Gi) = PIr(
n
�
i=1

Gi�Gn+1)

= 2[∆(
n
�
i=1

Gi�Gn+1) + δ(
n
�
i=1

Gi�Gn+1)](|V (Gn+1)|2

PIv(
n
�
i=1

Gi) + |V (
n
�
i=1

Gi)|2PIv(Gn+1))

−(|V (Gn+1)|2PIw(
n
�
i=1

Gi) + |V (
n
�
i=1

Gi)|2

PIw(Gn+1) + 4(|V (
n
�
i=1

Gi)||E(
n
�
i=1

Gi)|PIv(Gn+1)

+|V (Gn+1)||E(Gn+1)|PIv(
n
�
i=1

Gi)))
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= 2
[ n∑

i=1

∆(Gi) +
n∑

i=1

δ(Gi)
](
|V (Gn+1)|2

( n∑
i=1

PIv(Gi)
n∏

j=1,j 6=i

|V (Gj)|2
)

+
n∏

i=1

|V (Gi)|2PIv(Gn+1)
)

−
(
|V (Gn+1)|2

n∑
i=1

PIw(Gi)
n∏

j=1,j 6=i

|V (Gj)|2

+4

n∑
i,j=1,i 6=j

PIv(Gi)|V (Gj)||E(Gj)|
n∏

k=1,i 6=k 6=j

|V (Gk)|2
)

+
n∏

i=1

|V (Gi)|2PIw(Gn+1) + 4
(
PIv(Gn+1)

n∑
i=1

|V (Gi)||E(Gi)|

n∏
j=1,j 6=i

|V (Gj)|2 + |V (Gn+1)||E(Gn+1)|

n∑
i=1

PIv(Gi)
n∏

j=1,j 6=i

|V (Gj)|2
)

= 2
[ n∑

i=1

(∆(Gi) + δ(Gi))
]( n+1∑

i=1

PIv(Gi)
n+1∏

j=1,j 6=i

|V (Gj)|2
)

−
( n+1∑

i=1

PIw(Gi)

n+1∏
j=1,j 6=i

|V (Gj)|2 + 4
( n∑

i,j=1,i 6=j

PIv(Gi)|V (Gj)||E(Gj)|

n+1∏
k=1,i 6=k 6=j

|V (Gk)|2 +
∑

i≤j≤n
PIv(Gi)|V (Gj)||E(Gj)|

n+1∏
k=1,i 6=k 6=j

|V (Gk)|2
))

= 2
[ n∑

i=1

∆(Gi) +
n∑

i=1

δ(Gi)
] n∑

i=1

PIv(Gi)
n∏

j=1,j 6=i

|V (Gj)|2

−
( n∑

i=1

PIw(Gi)

n∏
j=1,j 6=i

|V (Gj)|2

+4
n∑

i,j=1,i 6=j

PIv(Gi)|V (Gj)||E(Gj)|
n∏

k=1,i 6=k 6=j

|V (Gk)|2
)
.

This completes the proof.

Example 2.1. An equivalent description of hypercube n−cube Qn is that it is the nth

power of K2. That is Qn = Kn
2 . By Theorem 2.2, we have

PIr(Qn) = PIr(K
n
2 ) = n22n

[
1

2
(∆(G(U) uH)) + δ(G(U) uH)(n− 1)− n

]
If n = 3 we have PIr(K

3
2 ) = 64.
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Example 2.2. Using Theorem 2.2 and corollary 2.1, we have PI(Cn) =

{
n2, n is even

n(n− 1), n is odd

PIr(Cn) =

{
4n2, n is even

4n(n− 1), n is odd.
We obtain the exact Revan Weighted PI index of

Cn1�Cn2� · · ·�Cnk is PIr(C
n1�Cn2� · · ·�Cnk) =


4k2

k∏
i=1

n2i , ni is even

4k
k∏

i=1
n2i

k∑
i=1

(
1− 1

ni

)
, ni is odd

where
n
�
i=1

Cni denotes the cartesian product of n cycles.

If each ni = n, then PIr(�Cn
k ) =

{
4k2n2k, ni is even

4k2(n− 1)n2k−1, ni is odd

3. Revan Weighted PI Index of S(G)(U) uH

Let G be a connected graph. The sub divison graph S = S(G) is the graph obtained
from G by replacing each of its edges by a path of length two, or equivalently, by inserting
an additional vertex into each edge of G. Clearly, V (S(G) contains all the vertices of G.

The edge a - Zagreb index is defined as, Za(G) =
∑

uv∈E(G)

(dG(u)a + dG(v)a). It is

clear that Z1(G) = M1(G), where M1(G) is the first Zagreb index and is defined as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)). The second Zagreb index is defined as M2(G) =∑
uv∈E(G)

dG(u)dG(v). The above indices are going to be used in the section 4.

Next we compute the PIr(S(G)(U) uH), for suitable U .

Theorem 3.1. Let G and H be connected graphs. If U = V (G) ⊆ V (S(G)), then

PIr (S(G)(U) uH) = 2(∆(S(G)(U) uH) + δ(S(G)(U) uH))[(|V (G)|
+|E(G)|)(2|V (H)|2|E(G)|+ |V (G)||PIv(H)|)]
−
[
4(|V (G)|+ |E(G)|)|E(G)|PIv(H) + (|V (G)|

+|E(G)|)|V (G)|PIw(H) + |V (H)|2(|V (G)|
+|E(G)|)(M1(G) + 4|E(G)|)
+4|E(H)||V (H)||E(G)|(|V (G)|+ |E(G)|)

]
Proof:
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PIr(S(G)(U) uH) =
∑

uv=e∈E(S(G)(U)uH)

(
rS(G)(U)uH(u) + rS(G)(U)uH(v)

)
(
nS(G)(U)uH
u (e) + nS(G)(U)uH

v (e)

)
=

∑
uv=e∈E(S(G)(U)uH)

[
(∆(S(G)(U) uH) + δ(S(G)(U) uH)

−dS(G)(U)uH(u)) + (∆(S(G)(U) uH) + δ(S(G)(U) uH)

−dS(G)(U)uH(v))

](
nS(G(U))uH
u (e) + nS(G(U))uH

v (e)

)
PIr(S(G)(U) uH) = 2(∆(S(G)(U) uH) + δ(S(G)(U) uH))∑

uv=e∈E(S(G)(U)uH)

(
nS(G)(U)uH
u (e) + nS(G)(U)uH

v (e)
)

−
∑

uv=e∈E(S(G)(U)uH)

(
dS(G)(U)uH(u) + dS(G)(U)uH(v)

)
(
nS(G)(U)uH
u (e) + nS(G)(U)uH

v (e)
)

= 2(∆(S(G)(U) uH) + δ(S(G)(U) uH))PIv(S(G)(U) uH)

−PIw(S(G)(U) uH)

Using Theorem [18] and [19], we have

PIr(S(G)(U) uH) = 2(∆(S(G)(U) uH) + δ(S(G)(U) uH))[(|V (G)|
+|E(G)|)(2|V (H)|2|E(G)|+ |V (G)||PIv(H)|)]
−[4(|V (G)|+ |E(G)|)|E(G)|PIv(H) + (|V (G)|
+|E(G)|)|V (G)|PIw(H) + |V (H)|2(|V (G)|
+|E(G)|)(M1(G)

+4|E(G)|) + 4|E(H)||V (H)||E(G)|(|V (G)|+ |E(G)|)]
Clearly, we observe that S(Cn) ∼= C2n and S(Pn) ∼= P2n−1 where Cn and Pn denote the

cycle and path on n− vertices. By using Theorem 3.1, we obtain the exact PIr of the
graphs S(Cr)(U) u Ps and S(Pr)(U) u Ps.

Corollary 3.1. Let r ≥ 3 and s ≥ 2 be two integers. Then for U = V (Cr),
PIr(S(Cr)(U) u PS) = 20r2s2 + 8r2s.

Corollary 3.2. Let r ≥ 2 and s ≥ 2 be two integers. Then for U = V (Pr),
PIr(S(Pr)(U) u PS) = 20r2s2 − 14rs2 + 8r2s− 36rs+ 2s2 + 16s.

The oldest one of the topological indices is the Weiner index. Weiner and hyper Wiener
indices, vertex, edge and Weighted PI indices were obtained in [1, 5, 18,19].

Example 3.1. If G is the zig-zag polyhex nanotube TUHC6[2n, 2] then PIr(G) = 96n2.

The zig-zag polyhex nanotube is the graph S(Cn)(U) u P2 where U = V (Cn) ⊆
V (S(Cn)). Since by Corollary 3.1 we obtain the formula as above in Example 3.1.

Example 3.2. If Ln is the hexagonal chain then PIr(Ln) = 96n2 + 64n+ 8.
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The hexagonal chain Ln is the graph S(Pn+1)(U)uP2, where U = V (Pn+1) ⊆ V (S(Pn+1)).
Since by Corollary 3.2 we obtain the formula as above in Example 3.2.

4. Revan Weighted PI Indices of Join of Graphs

In this section , we compute the Revan Weighted PI indices of join of two graphs. The
join graph G+H of graphs G and H is obtained from the disjoint union of the graphs G
and H, where each vertex of G is adjacent to each vertex of H.

For an edge e = uv of a graph G, let SG(e) be the set of common neighbours of u
and v and let |SG(e)| = sG(e). For our convenience, we partition the edge set of G + H
into three sets, E1 = {e ∈ E(G + H) | e ∈ E(G)}, E2 = {e ∈ E(G + H) | e ∈ E(H)}
and E3 = {e ∈ E(G + H) | e = uv, u ∈ V (G), v ∈ V (H)}. Also we have |E1| = |E(G)|,
|E2| = |E(H)| and |E3| = |V (G)||V (H)|.

Theorem 4.1. Let G and H be two graphs with n,m vertices and p, q edges respectively.
Then

PIr(G+H) = 2(∆G+H + δG+H −m)M1(G)

−4
∑

uv=e∈E(G)

(∆G+H + δG+H −m)sG(e)

−Z2(G)− 2M2(G) + 2M1(G)sG(e)

+2(∆G+H + δG+H − n)M1(H)

−4
∑

xy=e∈E(H)

(∆G+H + δG+H − n)sH(e)

−Z2(H)− 2M2(H) + 2M1(H)sH(e)

+mn(m+ n)[2(∆G+H + δG+H)− (m+ n)]

−2(∆G+H + δG+H)2(pm+ qn) + nM1(H) +mM1(G) + 8pq.

Proof:

Since degG+H(x) =

{
dG(x) +m, if x ∈ V (G)

dH(x) + n, if x ∈ V (H)
and the join of two graphs has

diameter atmost two, that is,

dG+H(u, v) =

{
1, if uv ∈ E(G) or uv ∈ E(H) or (u ∈ V (G) and v ∈ V (H))

2, otherwise

For an edge e = uv ∈ E(G) ⊂ E(G + H), by the definiton of join we have, nG+H
u (e) =

dG(u)−SG(e) and nG+H
v (e) = dG(v)−SG(e). Similarly we have nG+H

x (e) = dH(x)−SH(e)
and nG+H

y (e) = dH(y) − SH(e). For an edge e = xy ∈ E(H) ⊂ E(G + H). Let e =

ux ∈ E(G + H),where u ∈ V (G) and x ∈ V (H). Then nG+H
u (e) = m − dH(x) and
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nG+H
x (e) = n− dG(u). Hence

PIr(G+H) =
∑

uv=e∈E(G)

(∆G+H + δG+H − dG+H(u)

+ ∆G+H + δG+H − dG+H(v))(dG(u)− sG(e) + dG(v)− sG(e))

+
∑

xy=e∈E(H)

(∆G+H + δG+H − dG+H(u)

+ ∆G+H + δG+H − dG+H(v))(dH(x)− sG(e) + dH(y)− sG(e))

+
∑

u∈V (G)

∑
x∈V (H)

(∆G+H + δG+H − dG+H(u) + ∆G+H + δG+H

− dG+H(v))(m− dH(x) + n− dG(u)).

=
∑

e∈E(G)

[2(∆G+H + δG+H −m)(dG(u) + dG(v)− 2sG(e))

− ((dG(u) + dG(v))(dG(u) + dG(v)− 2sG(e)))]

+
∑

xy=e∈E(H)

[2(∆G+H + δG+H − n)(dH(x) + dH(y)− 2sH(e))

− ((dH(x) + dH(y))(dH(x) + dH(y)− 2sH(e)))]

+
∑

u∈V (G)

∑
x∈V (H)

[2(∆G+H + δG+H)(m+ n− (dG(u) + dH(x)))

− ((dG(u) + dH(x) +m+ n)(m+ n− dG(u) + dH(x)))]

= 2(∆G+H + δG+H −m)
∑

e∈E(G)

(dG(u) + dG(v))

− 4
∑

e∈E(G)

(∆G+H + δG+H −m)sG(e)−
∑

e∈E(G)

(dG(u) + dG(v))2

+ 2
∑

e∈E(G)

(dG(u) + dG(v))sG(e)

+ 2(∆G+H + δG+H − n)
∑

e∈E(H)

(dH(x) + dH(y))

− 4
∑

e∈E(H)

(∆G+H + δG+H − n)sH(e)

−
∑

e∈E(H)

(dH(x) + dH(y))2 + 2
∑

e∈E(H)

(dH(x) + dH(y))sH(e)
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+2
∑

u∈V (G)

∑
x∈V (H)

(∆G+H + δG+H)(m+ n)

−2
∑

u∈V (G)

∑
x∈V (H)

(∆G+H + δG+H)(dG(u) + dH(x))

−
[ ∑
u∈V (G)

∑
x∈V (H)

(dG(u) + dH(x))(m+ n)

−
∑

u∈V (G)

∑
x∈V (H)

(dG(u) + dH(x))2 +
∑

u∈V (G)

∑
x∈V (H)

(m+ n)2

−
∑

u∈V (G)

∑
x∈V (H)

(m+ n)(dG(u) + dH(x))

]

PIr(G+H) =2(∆G+H + δG+H −m)(M1(G))

− 4
∑

uv=e∈E(G)

(∆G+H + δG+H −m)sG(e)− Z2(G)− 2M2(G)

+ 2M1(G)sG(e) + 2(∆G+H + δG+H − n)M1(H)

− 4
∑

e∈E(H)

(∆G+H + δG+H − n)sH(e)

− Z2(H)− 2M2(H) + 2M1(H)sH(e)

+mn(m+ n)[2(∆G+H + δG+H)− (m+ n)]

− 2(∆G+H + δG+H)2(pm+ qn) + nM1(H) +mM1(G) + 8pq.

Using the above Theorem we deduce the following corollary and example.

Corollary 4.1. For any two triangle-free graphs G and H, we have sG(e) = 0 and for an
edge uv in G. Then

PIr(G+H) = 2(∆G+H + δG+H −m)M1(G)− Z2(G)− 2M2(G) + 2(∆G+H + δG+H

− n)M1(H)− Z2(H)− 2M2(H) + nm(n+m)[2(∆G+H + δG+H)− (m+ n)]

− 2(∆G+H + δG+H)2(pm+ qn) + nM1(H) +mM1(G) + 8pq

Example 4.1. PIr(K1 + Pm) =
m3 + 2m2 + 13m− 18 ifm = 2

(m− 2)(m2 − 1) + 2m(m+ 2)

+6(2m− 1) + 8(m− 3)(m− 1) ifm > 2

In the above example if Pm is a path graph on 4 vertices then we get Gem graph, it is the
Fan graph F4,1 and PIr(K1 + P4) = 144.

5. Conclusion

In this paper we focus on the Revan Weighted PI index on various graph operation.
Further this paper can be extended to some other molecular graphs, infinite graphs and
directed or digraphs.
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