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FEKETE-SZEGÖ INEQUALITY FOR ANALYTIC AND BI-UNIVALENT

FUNCTIONS SUBORDINATE TO (p, q)−LUCAS POLYNOMIALS

ALA AMOURAH1, §

Abstract. In this paper, a subclass of analytic and bi-univalent functions by means
of (p, q)− Lucas polynomials is introduced. Certain coefficients bounds for functions
belonging to this subclass are obtained. Furthermore, the Fekete-Szegö problem for this
subclass is solved.
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1. Introduction

Let A denote the class of all analytic functions f defined in the open unit disk U = {z ∈
C : |z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1. Thus each f ∈ A
has a Taylor-Maclaurin series expansion of the form:

f(z) = z +

∞∑
n=2

anz
n, (z ∈ U). (1)

Further, let S denote the class of all functions f ∈ A which are univalent in U (for
details, see [7]; see also some of the recent investigations [2, 3, 4, 14, 19]).

Two of the important and well-investigated subclasses of the analytic and univalent
function class S are the class S∗(α) of starlike functions of order α in U and the class
K(α) of convex functions of order α in U. By definition, we have

S∗(α) :=

{
f : f ∈ S and Re

{
zf ′(z)

f(z)

}
> α, (z ∈ U; 0 ≤ α < 1)

}
, (2)

and

K(α) :=

{
f : f ∈ S and Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, (z ∈ U; 0 ≤ α < 1)

}
. (3)

It is clear from the definitions (2) and (3) that K(α) ⊂ S∗(α). Also we have
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f(z) ∈ K(α) iff zf ′(z) ∈ S∗(α),

and

f(z) ∈ S∗(α) iff

∫ z

0

f(t)

t
dt = F (z) ∈ K(α).

It is well-known that, if f(z) is an univalent analytic function from a domain D1 onto
a domain D2, then the inverse function g(z) defined by

g (f(z)) = z, (z ∈ D1),

is an analytic and univalent mapping from D2 to D1. Moreover, by the familiar Koebe one-
quarter theorem (for details, see [7]), we know that the image of U under every function
f ∈ S contains a disk of radius 1

4 .

According to this, every function f ∈ S has an inverse map f−1 that satisfies the
following conditions:

f−1(f(z)) = z (z ∈ U),

and

f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

In fact, the inverse function is given by

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (4)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1). Examples of
functions in the class Σ are

z

1− z
, − log(1− z), 1

2
log

(
1 + z

1− z

)
, · · · .

It is worth noting that the familiar Koebe function is not a member of Σ, since it
maps the unit disk U univalently onto the entire complex plane except the part of the
negative real axis from −1/4 to −∞. Thus, clearly, the image of the domain does not
contain the unit disk U. For a brief history and some intriguing examples of functions and
characterization of the class Σ, see Srivastava et al. [12] and Yousef et al. [15, 16, 17].

In 1967, Lewin [9] investigated the bi-univalent function class Σ and showed that |a2| <
1.51. Subsequently, Brannan and Clunie [5] conjectured that |a2| ≤

√
2. On the other

hand, Netanyahu [11] showed that max
f∈Σ

|a2| = 4
3 . The best known estimate for functions

in Σ has been obtained in 1984 by Tan [13], that is, |a2| < 1.485. The coefficient estimate
problem for each of the following Taylor-Maclaurin coefficients |an| (n ∈ N\{1, 2}) for each
f ∈ Σ given by (1) is presumably still an open problem.

For the polynomials p(x) and q(x) with real coefficients, the (p, q)−Lucas polynomials
Lp,q,k(x) are defined by the following recurrence relation (see [8]):

Lp,q,k(x) = p(x)Lp,q,k−1(x) + q(x)Lp,q,k−2(x), (k ≥ 2),

with

Lp,q,0(x) = 2, Lp,q,1(x) = p(x), and Lp,q,2(x) = p2(x) + 2q(x). (5)

The generating function of the (p, q)−Lucas Polynomials Lp,q,k(x) (see [10]) is given by

A{Lp,q,k(x)}(z) =

∞∑
k=2

Lp,q,k(x)zk =
2− p(x)z

1− p(x)z − q(x)z2
.
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The concept of (p, q)−Lucas polynomials was introduced by Altınkaya and Yalçın [1].
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis
in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean
faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor
semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend,
sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2. The class Bµ
Σ(α, λ, δ)

Firstly, we consider a comprehensive class of analytic bi-univalent functions introduced
and studied by Yousef et al. [18] defined as follows:

Definition 2.1. (See [18]) For λ ≥ 1, µ ≥ 0, δ ≥ 0 and 0 ≤ α < 1, a function f ∈ Σ
given by (1) is said to be in the class Bµ

Σ(α, λ, δ) if the following conditions hold for all
z, w ∈ U:

Re

(
(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z)

)
> α (6)

and

Re

(
(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w)

)
> α, (7)

where the function g(w) = f−1(w) is defined by (4) and ξ = 2λ+µ
2λ+1 .

Remark 2.1. In the following special cases of Definition 2.1; we show how the class
of analytic bi-univalent functions Bµ

Σ(α, λ, δ) for suitable choices of λ, µ and δ lead to
certain new as well as known classes of analytic bi-univalent functions studied earlier in
the literature.

(i) For δ = 0, we obtain the bi-univalent function class Bµ
Σ(α, λ, 0) := Bµ

Σ(α, λ) intro-
duced by Çağlar et al. [6].

(iii) For δ = 0, µ = 1, and λ = 1, we obtain the bi-univalent function class B1
Σ(α, 1, 0) :=

BΣ(α) introduced by Srivastava et al. [12].

(iv) For δ = 0, µ = 0, and λ = 1, we obtain the well-known class B0
Σ(α, 1, 0) := S∗Σ(α)

of bi-starlike functions of order α.

(iv) For µ = 1, we obtain the well-known class B1
Σ(α, λ, δ) := BΣ(α, λ, δ) of bi-univalent

functions.

3. Main Results

We begin this section by defining the class Bµ
Σ(λ, δ) as follows:

Definition 3.1. For λ ≥ 1, µ ≥ 0 and δ ≥ 0, a function f ∈ Σ given by (1) is said to be
in the class Bµ

Σ(λ, δ) if the following subordinations are satisfied:

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z) ≺ A{Lp,q,k(x)}(z)− 1
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and

(1− λ)

(
f−1(w)

w

)µ
+ λ

(
f−1(w)

)′(f−1(w)

w

)µ−1

+ ξδz
(
f−1(w)

)′′ ≺ A{Lp,q,k(x)}(w)− 1,

where f−1is given by (4).

Theorem 3.1. For λ ≥ 1, µ ≥ 0 and δ ≥ 0, let f ∈ A belongs to the class Bµ
Σ(λ, δ). Then

|a2| ≤
2 |p(x)|

√
|p(x)|√∣∣∣(µ+ 2λ)

[
1 + µ+ 12δ

2λ+1

]
p2(x)− 2 (µ+ λ+ 2ξδ)2 (p2(x) + 2q(x))

∣∣∣ ,
and

|a3| ≤
p2(x)

(µ+ λ+ 2ξδ)2 +
|p(x)|

(µ+ 2λ)
(

1 + 6δ
2λ+1

) .
Proof. Let f ∈ Bµ

Σ(λ, δ). From Definition 3.1, for some analytic functions φ, ψ such that
φ (0) = ψ (0) = 0 and |φ (z)| < 1, |ψ (w)| < 1 for all z, w ∈ U, then we can write

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z) (8)

= −1 + Lp,q,0(x) + Lp,q,1(x)φ (z) + Lp,q,2(x)φ2 (z) + · · ·
and

(1− λ)

(
f−1(w)

w

)µ
+ λ

(
f−1(w)

)′(f−1(w)

w

)µ−1

+ ξδz
(
f−1(w)

)′′
(9)

= −1 + Lp,q,0(x) + Lp,q,1(x)ψ (w) + Lp,q,2(x)ψ2 (w) + · · · .
From the equalities (8) and (9), we obtain that

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z) (10)

= 1 + Lp,q,1(x)r1z +
[
Lp,q,1(x)r2 + Lp,q,2(x)r2

1

]
z2 + · · ·

and

(1− λ)

(
f−1(w)

w

)µ
+ λ

(
f−1(w)

)′(f−1(w)

w

)µ−1

+ ξδz
(
f−1(w)

)′′
(11)

= 1 + Lp,q,1(x)s1w +
[
Lp,q,1(x)s2 + Lp,q,2(x)s2

1

]
w2 + · · · .

It is fairly well known that if

|φ (z)| =
∣∣r1z + r2z

2 + r3z
3 + · · ·

∣∣ < 1, (z ∈ U)

and
|ψ (w)| =

∣∣s1w + s2w
2 + s3w

3 + · · ·
∣∣ < 1, (w ∈ U),

then
|rk| < 1 and |sk| < 1 for k ∈ N. (12)

Thus, upon comparing the corresponding coefficients in (10) and (11), we have

(µ+ λ+ 2ξδ) a2 = Lp,q,1(x)r1, (13)

(µ+ 2λ)

[(
µ− 1

2

)
a2

2 +

(
1 +

6δ

2λ+ 1

)
a3

]
= Lp,q,1(x)r2 + Lp,q,2(x)r2

1, (14)
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− (µ+ λ+ 2ξδ) a2 = Lp,q,1(x)s1, (15)

and

(µ+ 2λ)

[(
µ+ 3

2
+

12δ

2λ+ 1

)
a2

2 −
(

1 +
6δ

2λ+ 1

)
a3

]
= Lp,q,1(x)s2 + Lp,q,2(x)s2

1. (16)

It follows from (13) and (15) that

r1 = −s1 (17)

and
2 (µ+ λ+ 2ξδ)2 a2

2 = L2
p,q,1(x)

(
r2

1 + s2
1

)
. (18)

If we add (14) and (16), we get

(µ+ 2λ)

[
1 + µ+

12δ

2λ+ 1

]
a2

2 = Lp,q,1(x) (r2 + s2) + Lp,q,2(x)
(
r2

1 + s2
1

)
. (19)

Substituting the value of
(
r2

1 + s2
1

)
from (18) in the right hand side of (19), we deduce

that [
(µ+ 2λ)

[
1 + µ+

12δ

2λ+ 1

]
L2
p,q,1(x)− 2 (µ+ λ+ 2ξδ)2 Lp,q,2(x)

]
a2

2

= L3
p,q,1(x) (r2 + s2) . (20)

Moreover computations using (5), (12) and (20), we find that

|a2| ≤
2 |p(x)|

√
|p(x)|√∣∣∣(µ+ 2λ)

[
1 + µ+ 12δ

2λ+1

]
p2(x)− 2 (µ+ λ+ 2ξδ)2 (p2(x) + 2q(x))

∣∣∣ .
Moreover, if we subtract (16) from (14), we obtain

2 (µ+ 2λ)

(
1 +

6δ

2λ+ 1

)(
a3 − a2

2

)
= Lp,q,1(x) (r2 − s2) + Lp,q,2(x)

(
r2

1 − s2
1

)
. (21)

Then, in view of (17) and (18), Eq. (21) becomes

a3 =
L2
p,q,1(x)

2 (µ+ λ+ 2ξδ)2

(
r2

1 + s2
1

)
+

Lp,q,1

2 (µ+ 2λ)
(

1 + 6δ
2λ+1

) (r2 − s2) .

Thus applying (5), we conclude that

|a3| ≤
p2(x)

(µ+ λ+ 2ξδ)2 +
|p(x)|

(µ+ 2λ)
(

1 + 6δ
2λ+1

) .
�

By setting µ = δ = 0 and λ = 1 in Theorem 3.1, we obtain the following consequence.

Corollary 3.1. If f belongs to the class BΣ(1)= S∗Σ of bi-starlike functions, then

|a2| ≤
2 |p(x)|

√
|p(x)|√

|2p2(x)− 2 (p2(x) + 2q(x))|
,

and

|a3| ≤ p2(x) +
|p(x)|

2
.
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4. Fekete–Szegö problem for the function class Bµ
Σ(λ, δ)

In this section, we aim to provide Fekete–Szegö inequalities for functions in the class
Bµ

Σ(λ, δ). These inequalities are given in the following theorem.

Theorem 4.1. For λ ≥ 1, µ ≥ 0 and δ ≥ 0, let f ∈ A belongs to the class Bµ
Σ(λ, δ). Then

∣∣a3 − υa2
2

∣∣ ≤


|p(x)|
(µ+2λ)(1+ 6δ

2λ+1)
,

2|p(x)|3|1−υ|
|p(x)Υ(x)| ,

|υ − 1| ≤ 1
2(µ+2λ)(1+ 6δ

2λ+1)
× |Υ(x)|

|υ − 1| ≥ 1
2(µ+2λ)(1+ 6δ

2λ+1)
× |Υ(x)| ,

where Υ(x) = (µ+ 2λ)
[
1 + µ+ 12δ

2λ+1

]
p(x)− 2 (µ+ λ+ 2ξδ)2 p2(x)+2q(x)

p(x) .

Proof. From (20) and (21)

a3 − υa2
2 = (1− υ)

L3
p,q,1(x) (r2 + s2)[

(µ+ 2λ)
[
1 + µ+ 12δ

2λ+1

]
L2
p,q,1(x)− 2 (µ+ λ+ 2ξδ)2 Lp,q,2(x)

]
+

Lp,q,1

2 (µ+ 2λ)
(

1 + 6δ
2λ+1

) (r2 − s2)

= Lp,q,1

ϕ(υ, x) +
1

2 (µ+ 2λ)
(

1 + 6δ
2λ+1

)
 r2 +

ϕ(υ, x)− 1

2 (µ+ 2λ)
(

1 + 6δ
2λ+1

)
 s2

 ,
where

ϕ(υ, x) =
L2
p,q,1(x) (1− υ)[

(µ+ 2λ)
[
1 + µ+ 12δ

2λ+1

]
L2
p,q,1(x)− 2 (µ+ λ+ 2ξδ)2 Lp,q,2(x)

] ,
Then, in view of (5), we conclude that

∣∣a3 − υa2
2

∣∣ ≤ { |p(x)|
(µ+2λ)(1+ 6δ

2λ+1)
2 |p(x)| |ϕ(υ, x)|

0 ≤ |ϕ(υ, x)| ≤ 1
2(µ+2λ)(1+ 6δ

2λ+1)
,

|ϕ(υ, x)| ≥ 1
2(µ+2λ)(1+ 6δ

2λ+1)
.

Which completes the proof of Theorem 4.1. �

Putting µ = δ = 0 and λ = 1 in Theorem 4.1, we conclude the following result:

Corollary 4.1. If f belongs to the class S∗Σ, then

∣∣a3 − υa2
2

∣∣ ≤


|p(x)|
2 ,

2|p(x)|3|1−υ|
4|q(x)| ,

|υ − 1| ≤
∣∣∣ q(x)
p(x)

∣∣∣
|υ − 1| ≥

∣∣∣ q(x)
p(x)

∣∣∣ .
Putting υ = 1 in Theorem 4.1, we conclude the following result:

Corollary 4.2. If f belongs to the class S∗Σ, then∣∣a3 − a2
2

∣∣ ≤ |p(x)|

(µ+ 2λ)
(

1 + 6δ
2λ+1

) .
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[5] D. A. Brannan, J. G. Clunie, (1980), Aspects of contemporary complex analysis, (Proceedings of the
NATO Advanced Study Institute held at the University of Durham, Durham; July 12, 1979), Academic
Press, New York and London.
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