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AN EFFICIENT METHOD FOR A CLASS OF
INTEGRO-DIFFERENTIAL EQUATIONS WITH A WEAKLY
SINGULAR KERNEL

RUHANGIZ AZIMI', REZA POURGHOLI?, ALI TAHMASBI?, §

ABSTRACT. In this work, a class of volterra integro-differential equation with a weakly
singular kernel is discussed. The shifted Legendre Tau method is introduced for finding
the unknown function. The proposed method is based on expanding the approximate
solution as the elements of a shifted Legendre polynomials. We reduce the problem to a
set of algebraic equations by using operational matrices. Also the convergence analysis
and error estimation have been discussed and approved with the exact solution. Finally,
several numerical examples are given to demonstrate the high accuracy of the method.

Keywords: Shifted Legendre Tau method; Weakly singular kernel; Integro-differential
equation.

AMS Subject Classification: 65R20, 45D05.

1. INTRODUCTION

In recent years there has been a high level of interest in the field of integro-differential
equations, which are the combination of differential and Fredholm-Volterra integral equa-
tions. Many phenomena in various fields of engineering, mechanics, economics, poten-
tial theory, astronomy, chemistry, physics, electrostatics, etc, are modeled by integro-
differential equation [2,3,17].

In 1981, Ortiz and Samara [12] proposed an operational technique for the numerical
solution of nonlinear ordinary differential equations. During recent years considerable
works have been done for solving integral equations using Tau method [4,5,14,16]. We can
see the progress of this method for the numerical solution of partial differential equations
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and their related eigenvalue problems, iterated solutions of linear operator equations [1,
8-11,13].

Let us consider the general form of a class of weakly singular kernel of integro-differential
equation.

t (k) (g
Dyl =50+ ;[ 4=

where D is a linear differential operator of order m — 1 with polynomial coefficient p;(t),

t
ds+)\2/ k(t,s)yD(s)ds, t>0, sel0,b], (1.1)
0

D:Zpi(t)@. (1.2)

under the conditions

m—1
Z ajky(k)(()) =d;, m=max{J, Lk}, j=0,1,....m—1, (1.3)
k=0

Also, y(©(t) = y(t) is an unknown function, the known functions p;(t), f(t) are defined
on interval 0 <t < b, and aj, dj, A1, A2 are real or complex constants.
For Ao = 0, Equation (1.1) becomes Volterra integro-differential equation with a weakly
singular kernel. Especially if £k =0, o = % and all p; = 0 Equation (1.1) reduces to the

Abel’s integral equation
" y(s)
F0) = =x [ s

which occurs in many branches of science such as microscopy, seismology, radio astronomy,
atomic scattering. Some authors have used Tau method for solving integro-differential
equations [6,7,12,15]. The Organization of the rest of this article is as follows. In the next
section, we describe the basic formulation of shifted Legendre polynomials. In section
3, we construct the operational matrices of Legendre polynomials. Section 4, by using
Tau spectral method we construct and develop an algorithm for the solution of weakly
singular Volterra integro-differential equation with boundary conditions. We discuss the
convergence analysis and error estimation for the proposed function approximation in
sections 5, 6. In section 7, some illustrative numerical experiments are given. The paper
ends with some conclusions in section 8.

2. PROPERTIES OF SHIFTED LEGENDRE POLYNOMIALS

The classical Legendre polynomials are defined on the interval [—1, 1] and can be de-
termined with the aid of the following recurrence formulae

Lo(z) =1, Li(x) = =,

2141 i
L; = i ——L;_ , 1=1,2,....
+1(2) = S Lie) — s Lima(a),
2t — 1
For t € [0,1], let L;;(t) = Li(T), i = 0,1,2,.... Then the shifted Legendre
polynomials {L;;(t)} are defined by
2t —1
Ligt) =1, Lia(t) = —
264+ 1)(2t — 1 1

Liga(t)y = BN - L, =12,

(t+ 1)1
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If ®;,,,(t) be a vector function of shifted Legendre polynomials on the interval [0, ], as
Oy (1) = (L1, Lty L] (2.1)

then the set of L;;(t) is a complete L%(0,1)-orthogonal system, namely

! l P
/ Li;(t)Lyj(t)dt =< 2i+1" )
0 0, i # j.

So we define II,,, = span{Li o, Li1,--.,Lim}. For any y(t) € L*(0,1), we write y(t) =

o0
Z c;Ly j(t), where the coefficients c; are given by
§=0

2j+1 [ .
¢ = jl /Oy(t)Ll,j(t)dt, j=0,1,2,.... (2.2)

In practice, only the first (m + 1)— terms of shifted Legendre polynomials are considered.
Hence we can write

m
ym(t) ~ ZCle,j(t) = CTCI)Lm(t) = CTVXt, (23)
§=0
where CT = [cg, c1,..., ¢ and V is a non-singular matrix given by ®;,,(t) = VX; with

a standard basic vector , X; = [1, t,t2, ... ,tm]T, ()7 stands for the transpose.

Similarly a function of two independent variables k(t,s) may be expressed in terms of
the double shifted Legendre polynomials as

k(t,s) 2> > kiLyi(t) Lij(s) = @, () Ky m(s), (2.4)
i=0 j=0

where K is a (m + 1) x (m + 1) matrix and

2i+1\ /2j+1 Lol
/-c,;,j:< ’;L ><]z+ )/ / k(t,s)Lii(t) Lo (s)dtds, 0,5 =0,1,....m. (2.5)
0 0

Also, k(t,s) can be expressed as k(t, s) ~ @lq:m(t)KCI>Z7m(s) = X/ VTKV X, where V =
[Vi j]ij=0,1,....,m is a non-singular matrix given by ®;,,(t) = VX; with a standard basic
vector , Xy = [1,t,t2,...,tm]T. If we take K = VI KV then we can write k(t,s) =
XI'K X,.

3. OPERATIONAL MATRICES OF SHIFTED LEGENDRE POLYNOMIALS

3.1. Matrix representation of differential part. As a consequence of the previous sec-
tion, and aid of following lemma and theorems we derive formulas for numerical solvability
of weakly singular Volterra integro-differential equation (1.1) based on shifted Legendre
polynomial of the operational Tau method.

Also, we convert the operational approach to the Tau method proposed by Ortiz and
Samara [12] is based on following matrices
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O =

and n =

O = O
— o O
oSO~ O
N O
w O

Lemma 3.1. Let y,,(t) ~ CTV X, be a polynomial where CT = [cg,c1,...,¢m,0,...] ,
X, =[1,t,...]7 then we have

dk
Wym(t) =CcTvinkx,, tkym(t) =CTVviFX,, k=0,1,2,...

Theorem 3.2. For any linear differential operator D defined by (1.2) and any series
y(t) = CT(I)l,m(t) =CTVX, , we have

Dy(t) = CTvIv=1®,,,(t), (3.1)
where, TT="Y " n'pi().
=0
Proof. See [12]. O

3.2. Matrix representation of integral parts.

Theorem 3.3. Let ®;,,(t) = VX, be the shifted Legendre vector then

by k)
/ (Z S)ads:C’TVnkPAVXt, (3.2)
=

I(1-a)D(i+1)

Ti—at2) ,1=0,1,2,...,m, and

where I' is a diagonal matriz with elements I'; ; =

T
A= [BO,Bl,...,Bm} , B, = [tj,o,tﬂ,...,tj,m

which t;; , i,7 = 0,1,...,m is the coefficients of L;; ,0 = 0,1,...,m in expansion of
ti—atl
Proof.
Ey® LCTvnkx P, s, ., 8™
/ y(s) d:s:/77 Sds:C’TV’nk/ LI ds
o (t—s)* o (t—s)® o (t—s)

—_— ¢ 1 t s t gm T
=C"Vnp ds, ——ds,..., ——ds| ,
o (t—s) o (t—s)~ o (t—s)

by using the relation

/t s™ ds = F(l B a)F(m + 1)tm—a+1
o =5 " T'(m—a+2) ’

m=0,1,2,....

we can write

t (k)
/ y(s) ds ~ C’TVnk
0

D1 = @)1, s PO~ @)@,y (L)l + 1>tm—a+1r

(t —s) I'(—a+2) " T(—a+3) T T(m—a+2)
= CcTvybr, (3.3)
T .
where II = [t‘a"’l, et tm_o‘ﬂ} . By approximating t/=°*1 j =0,1,...,m, we

get
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oot =370 tiiLlii(t) = Bj®um(t),  Bj = [tjo,tj1,---stiml,
then we obtain

Il = [BoV Xy, BIVXy, ..., Bu VX" = A®y (1), A =[By,By,...

By substituting (3.4) into (3.3) we obtain

by (k)
/ U s TVt AV X,
o (t—s)

BT, (3.4)

(3.5)

0

Theorem 3.4. Let the analytic function y(t) and k(t,s) be expressed as (2.3) and (2.5)

then we have

t
/ k(t,s)yW (s)ds ~ CTVnl M Xy,
0

where _ B B B B
0 ko0 koa + k10 ko2 + 2k1a + %kz,o
0 0 %k‘o,o %ko,lj‘ %kl,O
0 0 0 k1,0
M=1y o 0 0
. . . . 1
0 o0 0 0

so the desired integration term can be writte

=

as

. tn+i+1 ] m

m
K .0
> Kij n+i+1

t
/ k(t,s)yW(s)ds ~ C’Tan[
0 i=0 j=0

on the other hand we can show

m.om tn-‘rj-f—i—‘rl |: 1 i| m

K. Kn)X
: n+i+1 ()X,

T fi+v1l i=0

i—0 j—=0
such that K (n) is a matrix having the following entries
’ 0, j<n-+i1.

Therefore, we can write

/Ot k(t, s)y(l) (s)ds ~ CTvy ( [ [n—i—iﬂ} ZOE(n)Xt} :L:O

n+i+1
=CcTvy'MX,.

=0 n=0

n=0

(3.6)

X

:chanL}m E(n)Xt]m X,
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4. MATRIX REPRESENTATION FOR THE SUPPLEMENTARY CONDITIONS

Let y(t) ~ Z c;Lij(t) = CTV X; on the left hand side of (1.3), it can be written as

m—1
a]ky 0)=d;, m=max(J,l,k), j=0,1,...,m—1,

k=0

m—1
CTV |:ajk77kX01| = dj.
k=0
m—1
Let H; = Z ajknng where X = [1,0,0,...,0]” thus the (jth) condition number of

k=0
(1.3) is converted to

C'VHj=d; j=0,1,...,m—1.
Now by setting H as the matrix with columns H;, j =0,1,...,m — 1 and by setting d =
[do,dy,...,dmn-1], as the vector that contains right-hand side of supplementary conditions,
they take the form

CTVH =d. (4.1)

Now, Let us start our algorithm to solve (1.1), (1.3).
We approximate f(t) by the shifted Legendre polynomials as

t) ~ Z fiLij(t) = FV Xy, (4.2)

where F' = [fo, f1,..., fm] and f; are given in (2.2).
Using (3.1), (4.2), (3.2), (3.6) and substituting in equation (1.1), it is easy to obtain
that
CTVIIX, = FVX, + M\CTVFTAV X, + Mo CT VI M X,

thus, the matrix vector multiplication representation for the (1.1) is as follows
CTH (I)l m(t) = F; m(t) + /\1CTK1@1 m(t) + /\QCTMlq)l m(t)

where IT, = VIIV™!, K| = Vn*T'A and M; = V' MV 1. As we pointed out in section 2,
the orthogonality of {Ll,l( )}t so we have

CTI, = F + MiCTK, + X\CT My,
also from equation(4.1) we have following system

T — — =
C’T[Hv MK — MM =F, (4.3)
C'VH =d.

Now setting
A:HU—)\lKl—I—)\QMl, H=VH
and
G= [EaFQ?‘"aHiJaAlyAQa"'aAerl*J]a g = [dlyd2a"'7dJaF07F1>"'7Fm7J]7

where H; denotes the (ith) column of H, system of (4.3) can be written as CTG = g,
which must be solved for the unknown coefficients cg, c1, ..., ¢m.
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5. CONVERGENCE ANALYSIS

In this section we present the shifted Legendre expansion of a function y(¢) with bounded
second derivative, converges uniformly to y(¢). Also, we state the estimated error for the
proposed method.

Theorem 5.1. (convergence theorem) If a continuous function y(t), defined on [0,1], has

bounded the second derivative ﬁg’ then the shifted Legendre expansion of the function as

o0
ZciLm(t) converges uniformly to the y(t).
i=0

d?y(t)
t

Proof. Let y(t) be a function defined on [0, {] such that ‘ 72

constant and
2 +1\ [
CZ:< Z;F )/ y(t)Ly(H)dt, i=0,1,... m.
0

By partial integration and using following equation

2,
Liv1 — Ly = 7(21 + 1)Ly ()

‘ < «, where « is a positive

we have

i = S (00 (1)~ L) - | (Lasia() — Luics () Lt

R , AN I A L , ) Ay
= —2/0 202i+3) (Ll,i+2(t) - Ll,i(t)) ETLRs 2/0 22— 1) (Ll,i(t) - Lz,pz@)) TR

LM o*y(t) (Ll,z'+2(t) - Ll,i(t))dt LMoy (Ll,z‘(t) - Lz,H(t))dt

4 ), 0Ot 2 +3 2 —1

1), o

Now, let Q;(t) = (20 — 1)Lj;42(t) — 2(2i + 1)Ly ;(t) + (24 + 3)L;;—2(t) then we have

: L OPy(t)
‘S i@ien@=1 J, o Subd

la
4(2i 4 3)(2i —
Also we have

! 2 ! 2
([ 1@uld)” = (| 1620 = 1)Lussale) — 2020 + DL + 20+ 3)L1i-a(0) i)
0 0
. 2 . 2 . 2
Sl<(2z—1)z (4 +2)% | (20 +3) z)

thus |¢| <

5 Jo @ittt

2i+5 2t +1 2i —3
- 612(2i + 3)2'
- 2i—3
12a/6 -
Thus we obtain |¢;| < aixf. Consequently, Z ¢; is absolutely convergent and thus
4./(2i — 3)3 =

the expansion of the function converges uniformly. O
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Theorem 5.2. Let y(t) be a continuous function defined on [0,1] with bounded second

2y(t
derivative, say ‘aaytg )’ < «, then we have the following accuracy estimation
3| «— 1
n < l2 - e ond)
e 8 i:%:1<2i_3)4
where
l m /
ey = (/ (y(t) = eilii(t)) dt) (5.1)
0 i=0
Proof.
! m 9 1, > m 2
= [ (00 =D etui) = (S et -3 eitai(v)
0 i—0 0 Y=o i=0
00 o l
_ 2 / 2 _ 2
= > & Liwdt= Y
i=m+1 i=m+1 (22 + 1)
> 6021°
<
- i%l 16(2¢ — 3)3(2i + 1)
< 6021° & 1
- 16 M (26 — 3)4
I | — 1
Then we have, g, < al2\/§ i:%;rl m- .

6. ERROR ESTIMATION

In this section, we state the estimated error for the weakly singular Volterra integro-
differential equation (1.1). Firstly, we define

em(t) = y(t) — ym(t) (6.1)

If y,,(t) is a good approximation for y(t) then for a given €, Max |e,(t)] < e. For this
purpose, we are looking for an approximation for e, (t) by using the same method we used
for approximation of y(t). Firstly, we obtain from equation (6.1) that

y(t) = em(l) + ym(t), (6.2)
Therefore by using equations, (6.2) and (1.1)we have,

(5) + ys(s)
(t—s)

_ e t D (s) 4+ 40
Dlem(®) + ym(®) = F(£) + M /0 ds + Xy /0 K(t, 5)(e0(s) + 50 (s))ds,

m—1
Z ajk(em(t) + Ym ()P (0) = dj, m=max(J,l,k), j=0,1,...,m—1,
k=0

also we have

t e(k) s
Diem(t)) = Hu(t) + A /0 o g;a

t
ds + )\2/ k(t, s)ell) (s)ds,
0
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Z ajk(em(t))(k)(O) =0, m=mazx(J,l,k), 7=0,1,...,m—1,

H,,(t) is a perturbation term associated with y,,(¢) and can be obtained with following
formulae

()()

H(0) = 10 = Dlum (@) + 31 [ 2t [k 10,

We proceed to find an approximation (e, n)(t) to the e;,(t) in the same as we did for the
solutions of equations (1.1) and (1.2) . (N denotes the Tau degree of e,,(t)). In fact, we
solve the same problem of this time with the unknown function e, (¢). By obtaining the
approximation of e,,(t), we actually approximate y(t) — ym ().

7. NUMERICAL RESULTS AND COMPARISONS

In this section, we present five numerical examples to demonstrate the accuracy of the
proposed method. The results show that this method, by selecting a few numbers of shifted

L
Legendre polynomials is accurate. Let t; =ih,1=0,1,2,...,N, h = ~ where N denotes

the final space level ty , N + 1 is the number of nodes. In order to check the accuracy of
the proposed method, the maximum absolute errors and Ls norm errors between the ex-
act solution y(t) and the approximate solution y,,(t) are given by the following definitions.

Maximum norm error: || ey ||co= maz | y(t;) — ym(t;) |-
Ly norm error: — (Z | y(ti) — ym(ts) ]2>

Example 1. As a first application, we offer the following Volterra integro-differential
equation with weakly singular kernel

/
y"(t) — 2y (t) = 6t — 21 — 16,5 4 ft y(s) ds — 2 fg tsy”(s)ds, s<1, t>0,
y(O) =1, yl(o) =0,

The exact solution y(t) = > + 1. we have obtained the exact solution in four terms
m = 3 which shows the high accuracy of the method.

Example 2. Consider the following Volterra integro-differential equation with weakly sin-
gular kernel

y(4)()—y( s<1, t>0,
y(0) =4'(0) =1, y”(O) = 2, y”’(o) =3,

with f(t) = —1+4e'+ 3 (—ﬁ— %et\/fr(5+2t)erf(\/i)> where er f(t) is the error function.

The exact solution of this example is y(¢) = 1 + te’. The maximum absolute errors and
Ly norm errors between the exact solution y(¢) and the approximate solution y,,(t) with
various choices of m and two different values N = 100, and N = 50 , are presented in
Table 1. We see in this table that the results are accurate for even small choices of m. The
graphs of the maximum absolute error function for m =9 , m = 7 are shown in Figures 1
and 2.
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TABLE 1. || ens || is the Maximum norm error and || eps ||2 is L2 norm
error .

N =100 N =50
m|lem |l I en |2 | enr lloo I en |2
7 149x107% 873x10% 149x10% 1.23x107"
9 4.17x10719 2.00x 10~ 4.17x 10710 283 x 10711
12 3.10x 1071 144 x 107 3.10x 10~ 2.10 x 10~16
16 1.33x 1071 4.17x10717 1.33x10°1° 6.21 x 10717
15 212x1077 127x107% 207x10"7 1.79x 1078

fa.x 0% - /\ b ax 106
N / 12x10°¢F
B.x100 - [

/ \ 1x10° [

: \ / oxiorf
X100~ \ \ / 4x107F

- /

- \ \ [ 2x107F

: V. ol ‘ \\‘

02 04 06 08 10| 02 04 06 08 10]

FiGURE 1. The maximum FiGUurE 2. The maximum
absolute error function for absolute error function for
m=29 m=7

Example 3. Consider the following nonlinear Volterra integral equation [18]

fot cos(t — s)y"(s)ds = 6(1 — cost), 0<t<1,
y(0) =4'(0) =1

The exact solution of this example is y(t) = 3. In this example, we implement the
shifted Legendre Tau method to solve this kind of Volterra integral equation solved in [18]
by a method based on Haar functions. We show the comparison of the numerical and
exact solution for m = 8 in Figure 3. In Table 2, we make a comparison of the presented
algorithm with the Haar wavelet method proposed in [18]. The maximum absolute errors
for different values of m are shown in Table 2. Obviously, the absolute errors of proposed
method are low as compared to the absolute errors in [18]. From the results of this table,
the best results we have achieved is at m = 16. Also, we plot the logarithmic graph of
maximum absolute error (logigError) with various values of m in Figure 4.
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Tau solution

——— Exact solution

02

0.6 0.8 1.0

FiGURrE 3. Comparison of numerical and exact solutions of Example 3 for

m=3_8

TABLE 2. || ey ||oo is the Maximum norm error.

SLT method, N=100 HW method [18]
m_ |lem oo | enm [loo
8 431x10°° 8.4 x 1073
10 6.34 x 104 -
12 5.50 x 10719 —
14 3.38 x 10712 —
16 1.50 x 10714 2.1x 1073
3

FIGURE 4. The logarithmic graph of maximum absolute error (logioError)
with various values of m for Example 3

Example 4. Consider the following Volterra integro-differential equation

YD)+ () —y(t) = f(t) + [

/
y(s) ds — Oty”(s)ds7 0<t<1,

Vi—s

y(0) =1, 4/(0) =0, y"(0) = =1, y"(0) = 0,

where f(t) =1 — cos(t) — sin(t) + \/ﬂ(—cos(t)Fresnels(\/Q;t) + Fresnelc( 2t)3in(t)>.

™
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The exact solution of this example is y(t) = cos(t). As we expected, Tau method has
produced an accurate approximation of the exact solution. The maximum absolute error
for different choices of m is shown in Table 3. Also in Figure 5, an illustration of the rate
of convergence for the shifted Legendre Tau method with various m is shown.

TABLE 3. Maximal absolute error(|y(t) — ym/(t)|) for different choices of m.

t m=n="7 m=n=10 m=n=15
0.1 1.43x107? 3.06x107™ 2.06 x 1023
0.2 142x1078 751 x107* 5.95x%x 10723
0.3 4.18x 1078 781 x107'* 453 x10~23
0.4 7.05x1078 1.90x 10713 2.89 x 10~22
0.5 813x1078 6.82x1071° 4.29 x 10~22
0.6 6.61x107% 1.89x 1071 2.92 x 10722
0.7 3.38x107% 8.86x107™ 4.93x10723
0.8 345x 1072 748 x107* 567 x 10723
09 1.19x107% 328x107'* 1.98x10~23

1 1.60x10°% 3.25x10716 6.79 x 10-2°

-8 —4@— Log,, MAE

~10}

14+

-16 +

—%— Log,, L,Norm

FIGURE 5. An illustration of the rate of convergence for the shifted Le-

gendre Tau method with various m of Example 4

Example 5. Consider the following Volterra integro-differential equation

y O () + v/ (1) —y(t) = f(&) + [y %ﬁsds — ot +8)yP(s)ds, 0<t<1,
y(0) =1, y'(0) = 3, ¥"(0) = 7
3 1 \ B N
where f(t) = P + g VI }1(24—75 ey ) tan(V/).

The exact solution of this example is y(t) = v/1 + t. Table 4 shows the Tau error and

estimate error discussed in section 6.
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TABLE 4. "Error 1”7 is the Legendre Tau error and ”Error 2”7 is the estimate
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error that stated in section 6.

t m="7 m=11
Error 1 Error 2 Error 1 Error 2

0.1 934x107% 934 x10°% 861x 10712 8.61 x 1012
02 221x1077 221 x1077 5.36x 107" 5.36x 107"
0.3 742x1078 742x10°% 824x 10711 824 x 10~ !
0.4 2.07x1077 2.07x10"7 7.88x1071% 7.88x 10712
0.5 2.94x1077 294 %1077 1.03x 10719 1.03 x 10~
0.6 9.02x1078% 9.02x10"% 4.11x 10" 4.11x10~ 11
0.7 1.81x1077 1.81 x10~7 6.06 x 10~ 6.06 x 10~ 1
0.8 240x 1077 240x 1077 553 x 107" 553 x 10711
0.9 9.13x107% 9.13x107% 1.31x107'" 1.31x10~!!

1 263x1078 2.63x107% 592x1071% 592 x 10715

8. CONCLUSION

In this research, the Volterra integro-differential equation with a weakly singular kernel
was solved based on shifted Legendre Tau approximation in conjunction with the opera-
tional matrices of partial derivatives and integral parts. The most important section of our
method is converting the problem to a linear system of algebraic equations. The perfor-
mance of the proposed method for the considered problems was measured by calculating
the maximum norm error and Lo norm error. Also, the proposed method was validated
numerically by some numerical examples and it was seen that the method exhibits the
exponential convergence and produces highly accurate results for smooth solutions.
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