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CERTAIN SUBCLASS OF UNIVALENT FUNCTIONS ASSOCIATED
WITH M-SERIES BASED ON ¢ DERIVATIVE

SHAHRAM NAJAFZADEH', §

ABSTRACT. By applying the g-derivative, M-series, convolution an subordination struc-
tures, we introduce a new subclass of univalent functions. For this subclass of functions,
we obtain coefficient inequality, convexity and convolution preserving property. Some
consequences of geometric properties are also considered.
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1. INTRODUCTION
The M-series investigated by Sharma [10] and is denoted by:
My (b1, ... by di, . dy; 2) = My (2)
_ i bk (ba)i  2* (1)
= (dy)g - (dy) Tk + 1)

where a, z € C, Re{aa} > 0 and (b, )k, (dm)r are the well-known Pochhammer symbols
which are defined in terms of the Gamma function by:

Tz +k) 1 , k=0,
=70 " \aw+1)...@rk-1) ., keN={L2..}

(2)

It is easy to see that by the ratio test, the series in (1) is convergence for all z if z < y.
The extension of both Mittag-Leffler function and generalized hypergeometric function
»Fs called generalized M-series was introduced in [12] and denoted by:

gy — S B0 (b
MO =D T PO )

For more details see [6] and [11].
The series in (3) is convergence for all z if x < y + Re{a}. Also it is convergent for
|z| < a®, if z =y + Re{a}.

! Department of Mathematics, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran.
e-mail: najafzadeh1234@yahoo.ie; ORCID: https://orcid.org/0000-0002-8124-8344.

§ Manuscript received: October 01, 2019; accepted: January 20, 2020.
TWMS Journal of Applied and Engineering Mathematics, Vol.11, No.4 (C) Isik University, Department
of Mathematics, 2021; all rights reserved.

1281



1282 TWMS J. APP. AND ENG. MATH. V.11, N .4, 2021

The g-analogue of Pochhammer symbol is defined by:
k—1
(e =[]0 =7,  (keN), (4)
n=0
and for k=0 and ¢ # 1, (7;9)o = 1.
When k — oo, we shall assume that |¢| < 1, see [3]. Also g-derivative of a function f(z)
is defined by:

IS,
@) ) = =5 0 a20) (5)
and
lim (9,f) () = f/(2). (6)

By using (5), we conclude that:
z

@50)) = (05) (), m

g _LaA+1D) 5

T T, —n+1)°
Indeed T'y(2 + 1) = %Fq(z), see [3] and [5].

Further, the g-analogue of the Beta function is defined by:
b a1 (ta:q) Ly(2)ly(y)
Baz,y:/tx_l L0, (1) = e 9
ol9) 0 (tg¥; q)oo o) Ly(x +y) ©)
where Re{z} > 0, Re{y} > 0 and I'y() is the ¢-gamma function.
Now, we consider the g-analogue of generalized M-series as follow:
k

(Re{\} +1 > 0). (8)

[e.9]

(b1; @)k (ba; Ok z
di; @)r -+ (dy; k(g Or Tg(ak + B)’

where o, 8 € C, Re{a} >0, |¢| <1, (7;¢)k is the g-analogue of Pochhammer symbol and

My (z59) = (10)

=

I'4(-) is the ¢-gamma function, see [8]. We note that 2‘./\/15(2, q) is convergent, see [6].
Some special cases of g‘/\/lg(z; q) are:

(1) The g-Mittag-Leffler function [7].

(2) The generalized ¢-Mittag-Leffler function [12].

(3) The g-generalized M-series as a special case of the well-known ¢-Wright generalized
hypergeometric function [9)].

Let A denote the class of function f(z) of the type:

f(2) :z—i—Zakzk, (11)
k=2

which are analytic in the open unit disk:
D={zeC:|z| <1}, (12)

and N be a subclass of A consisting of functions with negative coefficients of the form:

f(z)=2z— Zakzk, (ar = 0). (13)
k=2
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For f(z) given by (11) and g(z) = z + > e sbxz" the Hadamard product (convolution) of
f and g denoted by (f * g) is defined by:

(f _Z+Zakbkz (9% f)(2). (14)

Further for f and g analytic in D, we say that f is subordinate to g written f < g, if there
exists a function w analytic in D, with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(2)).
If ¢ is univalent, then f < ¢ if and only if f(0) =0 and f(D) C g(D).

Now we introduce a new subclass of N denoted by S(A, B, t) consisting of all functions
in AV for which:

zH'(z2) 14 Az

fi(2) 11 Bz (15)
or equivalently
S iciet <1 (16)
A-BEE |
where 0 <t <1, -1<B<1,-1<AL1,
H(z) = (f=F)(z),  fi(z) = (A —-1t)z+1f(2), (17)

f(z) € N and

(1—b1)--- (1~ ba) >z+ — My (zq). (18)

1
O = (14 o e 5 )

From (14), (17) and (18) with a simple calculation, we get:

_ - bl Q) ) (b%Q)k zk
a 22 (di;q) k(@ )Tk + 5)" 19)

For more details about g-calculus, M-series and related areas, one may refer to the recent
papers [1, 2] and [4] on the subject.

2. MAIN RESULTS

In this section, we shall obtain sharp coefficient estimates for functions in S(A, B, t).
Also we will prove S(A, B,t) is a convex set.

Theorem 2.1. Let f(z) =z — > ro,arz® € N. Then f € S(A, B,t) if and only if

i[( i) .bl’ )q>.<'q(,bx>;q”<€ak+m t)zi_—fi”}akgl’ 0

k=2

where —1 < A,B<1,0<t<1and B < A.
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Pmof. Let z € 9D = {z :|z| = 1}, so by (11) and (19) we have:
= |2H'(2) — fi(2)| — |Afi(z) — BzH'(2)|

o (dy; r(q; Orlg(ak + B)

kz - b1, Qs+ (bas @)k P (1 —t)z—tf(2)

— A1 —t)z+tf(z) — B <2 - ; (di; @)k -+ - (dys Qi (a5 @)k

RRs k(b1 @)k - - - (ba; @) I
_‘ kzzg[(dl;Q)k~--(dy;q)k(q;q)qu(akJrﬁ) t} :

k(b1; @)k - - - (be; @) rak k
Ly(ak +B)

Re 3 (015 Ok - - - (ba; O -
kz; [tA Bk(dl;q)k'--(dy;q)k(q;q)qu(akJrB)] a
By putting
3 (b1 )k -+ - (bas e _
“ Bk(dl;q)k~--(dy;q)k(q;q)kf(ak+ﬁ)_ _
HA— B)— [k(dl; ) (b1; Dk - -+ (ba; P _t_ B,

ko (dys @)k(qs @)kl (ak + B)
the above expression reduces to

= k(b1 @)k - - - (ba; @)k B N
xS éhdnq)k---(d Dnlg Tk p B A= B)]
and
- (b1, Dk (bz; O
-p zjz[( di; @)k - (dy; Orl(q; Drlg(ok + B) t) 4
.- k(bys @k -+ - (bas @k )\ a=8 1
kz [( di; q)i -+ (dy; Q)r(q: DT (k + B) t) (A-B) H] *
<1

By using (20), we get X < 1, s0 f € S(4, B,t).
To prove the converse, let f € S(A, B,t), thus:
zH'(2)

ak_(A_B) )

B) + t(A - B):| aj

R |
zH’(z)
A-B 70)
> k(b1 @)k - - - (ba; @) k(1 _ 4y,
kzz (di; @) (dy; (g QL (ak + B) (1-0z-t/) <1
- } B k(b1s @)k - (bus @)ra k> ’
A =0z +8/(2)) = B <z kX::Q (d1;Q)k“-(dy;Q)k(Q;Q)kr(akJrﬁ)z
for all z € D. Since for all z € D, Re{z} < |z|, we have:
e k(b1; )k - - - (ba; O B ] k
o :2[ul;q)k---<dy;q>k<q;q>kr(ak+6) I 4
4B {tA_ BE(by; @)k - - - (ba; ]a k '
= (di; @k -+~ (dy; Qr(q; QT (ak + B)
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By letting z — 1, through positive real values and choose the values of z such that zﬁéS)

is real, we get:

o0

< E(b1;q)k - - - (be; @)k _t>a
= \(d1; @)k - (dy; Dr(g; DT (ak + ) k

= Bk(bi; @)k - - (ba; )k
S 2 <tA I -((dy; ()I)k(%(Q)k;ank + B)) o
and this gives the required results. ([l
Remark 2.1. We note that the function
A-B 9

G(z)=2z— 2%, (21)

< 2(b13q)2 -+~ (be3q)2
(d1;q)2 -+ (dy; q)2(q; q)2l' (20 + 8
shows that the inequality (20) is sharp. Also for all k > 2, we have:
(A-B)
< k(b @)k - (ba; Ok
(di; @)k -+ (dys il )il (ak + B)
Theorem 2.2. S(A, B,t) is a convex set, where =1 < A <1, -1<B<1land0<t<1.

)—t> (1-B)+tA— B)

ay < (22)

t> (1—B)+t(A—B)‘

Proof. To establish the required result, it is sufficient to prove that if the functions f;(z),
(j =1,2,...,m) bein the class S(4, B, t), then the function h(z) = > 772, A; f;(2), (A; = 0,
> je1Aj = 1) is also in S(4, B,t). But by definition of h(z), we obtain:

o

h(z) = i)\j (z - kZQ ak’jzk)

= 5 — i (Z )\jak,j)zk.

k=2 j=1

But by Theorem 2.1, we have:
- kE(b1; @)k -+ - (be: @k B > B - } m .
2K(dl;q)k---(dy;q)k(q;q)kf(ak+ﬂ) t)(1=B)+t{A-B) <;>\] ku)

k=
I k(by; @)k - - - (ba; @)k B B .
)\J{Z[((dl;fI)k"'(dy?q)k(Q§Q)kF(ak+/3) t) (1-B)+u4 B)} lm}

m
j=1 k=2
m
<) A(A-B)=A-B,
j=1
which completes the proof. ]

3. GEOMETRIC PROPERTIES OF S(A4, B,t)

In the last section, we show that the class S(A, B,t) is closed under convolution. Also
radii of starlikeness convexity are introduced.
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Theorem 3.1. Let the function f and g defined by:

fe)=2=Y az*,  glz)=2-) b,
k=2 h=2

be in the class S(A, B,t), then fxg given by (14) belongs to S(A, B, t), where By <

_t+[@en -0 ]

Y= Q(OJ, 6) —t ’
- k(b1; @)k - - - (bz; @)k
QD) = @ (s el (k1 B)
Proof. Tt is sufficient to show that:
kzﬂ [(Q(a,ﬁ) —t)(jl__%) +t] agbr < 1,

where Q(a,b) is defined by (24).
By using Cauchy-Schwartz inequality, from (20), we obtain:

> [(@ s -0 (=) +o] Vam <1

k=2
Hence, we find the largest By such that:

1— By

[e.9]

k=2 2

or equivalently

—— _ (Qe,8) =) (5=F) +1
RN TN B e = A

This inequality holds if

AY

1

Y

A-B [(Q(a.5) =) (1 = B) + 1A - B)| (4~ Bo)

(Q(a, ) —=t)(1 = B) + (A~ B) s [(Q(a,ﬁ) —1)(1 = Bg) + t(A - BO)} (A - B)

or equivalently
AY —1

Yy -1~

where Y is given by (23), and this completes the proof.

Theorem 3.2. If f(z) € S(A, B,t), then:

(1) f is univalently starlike of order § (0 < d < 1) in |z| < Ry, where:
1
1-§ 1-B =
= ] f _— —
Ri=in {k_é ((kQ(a,B) t)(A—B)HN :

k>2

By

N

and Q(«, B) is given by (14).
(2) f is univalently convex of order § (0 < < 1) in |z| < Rg, where:

Ry = inf [m <(kQ(a,ﬁ) —t)(i__i) +t>]ki1.

Proof.

(23)

(24)

> [(Qm,m () +t] aszg [(Qm,g) [ +t] Varbr < 1.

)
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2L 1| <1 -6 for |2 < Ry. But

(1) It is sufficient to show that |

S (k= Dagk| X (k= aglzF!

!
! 2 — > agzk 11— aglzF!
k=2 k=2
or .
k-0 _
5 (£ <1
= \1-§

By applying (22), we conclude the result.
(2) Since f is convex “if and only if z f’ is starlike”, we get the required result, so the
proof is complete.

O
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