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DENUMERABLY MANY POSITIVE SOLUTIONS FOR

RL-FRACTIONAL ORDER BVP HAVING DENUMERABLY MANY

SINGULARITIES

K. RAJENDRA PRASAD1, MAHAMMAD KHUDDUSH1, M. RASHMITHA1, §

Abstract. In this paper, we consider Riemann-Liouville two-point fractional order
boundary value problem having denumerably many singularities and determined suf-
ficient conditions for the existence of denumerably many positive solutions by an appli-
cation of Krasnoselskii’s cone fixed point theorem in a Banach space.
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1. Introduction

Recently, boundary value problems associated with fractional order differential equa-
tions received a significant popularity due to its attractive applications in various fields
of chemistry, physics, polymer rheology, aerodynamics, etc. Further, fractional order dif-
ferential equations have been used for mathematical modeling in potential fields, signal
processing, viscoelastic materials, diffusion problems, heat propagation, control theory
and many others. In recent years, there are certain research articles on the existence and
uniqueness solutions of fractional order nonlinear boundary value problems. Among them
we refer few articles, Benchohra et al.[2] studied the class of fractional order boundary
value problem using the technique associated with measures of noncompactness. Agha-
jani et al. [1] studied the solvability of fractional order integro-differential equations by
alternative Leray-Schauder fixed point theorem. Li et al. [8] studied on the existence of
mild solutions for fractional differential equations with nonlocal conditions. Wang et al.
[12] investigated some fractional differential equations by new variant fixed point theorem
in Banach spaces. Liang et al. [9] studied the coupled system of nonlinear fractional difier-
ential equations by applying Monch type fixed point theorem in a Banach space. Borisut
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et al. [3] studied fractional order boundary value problem based on Kransnoselskii’s fixed
point theorem and Darbo’s fixed point theorem.

In 1983, Leibenson [7] is the first to introduced the p-Laplacian equation,(
φp(x

′(t))
)′

= f
(
t, x(t), x′(t)

)
,

where φp(ξ) = |ξ|p−2ξ, p > 1. The operator φp is invertible and φq(q > 1) is its inverse
operator such that q = p/(p− 1).

The p-Laplacian operator and fractional calculus arises from many applied fields such
as turbulant filtration in porous media, blood flow problems, rheology, modelling of vis-
coplasticity, material science, it is worth studying the fractional p-Laplacian differential
equations. Moreover, the Increasing Homeomorphism and Positive Homomorphism Opera-
tors(IHPHO) generalizes and improves the p-Laplacian operator. So research on fractional
order boundary value problem with IHPHO has gained momentum.

In [13], Zhao and Liu studied the following fractional differential equation,

(φ(CDv
0+u(t)))′ + h(t)g(t, u(θ(t))) = 0, t ∈ (0, 1),

u(0) = au(1), u′(1) = bu′(0) + λ[u], ui(0) = 0, i = 2, · · · , n− 1,

where 2 ≤ n − 1 < v ≤ n and CDv
0+ is the Caputo fractional derivative. In the sense of

a monotone homomorphism, they established some sufficient criteria for the existence of
at least two monotone positive solutions by employing the fixed point theorem on cone
expansion and compression.

In [4], Ege and Topal considered the fractional boundary value problem with IHPHO,

CDq
(
φ(CDrz(t))

)
+ f

(
t, z(t)

)
= 0, 0 < q ≤ 1 < r ≤ 2, 0 < t < 1,

α1z(0)− β1z
′(0) = −γ1z(ξ1), α2z(1) + β2z

′(1) = −γ2z(ξ2), CDrz(0) = 0.

and established existence of positive solutions by utilizing Krasnoselskii’s and Legget–
Williams cone fixed point theorems on a Banach space.

Recently, Wang and Zhai [11] studied the fractional order infinite-point boundary value
problem,

Dβ
0+

[
φp
[
Dα

0+z(t)− g(t)
]]

+ f(t, z(t)) = 0, 0 < t < 1,

z(0) = z′(0) = · · · = z(n−2)(0) = 0, Dα
0+z(0) = 0, z(j)(1) =

∞∑
k=1

αkz(ξk), j = 1, 2, · · ·, n− 2,

where n− 1 < α ≤ n, n ≥ 3, 0 < β ≤ 1 and studied existence and uniqueness of solutions
by fixed point theorem for φ – (h, e)– concave operators.

In this paper, we focus on the existence of denumerably many positive solutions for
Riemann-Liouville fractional order boundary value problem with IHPHO,

D%
0+

[
φ
[
Dϑ

0+z(t)
]]

+ω(t)f(z(t)) = 0, 0 < t < 1,

z(0) = Dϑ
0+z(0) = 0, D%

0+
z(1) + z(1) = Ia0+z(1),

 (1)

where D%
0+
, Dϑ

0+ denote fractional derivatives of Riemann-Liouville type with 0 < % ≤ 1,
1 < ϑ ≤ 2, Ia0+ (a > 0) denotes Riemann-Liouville fractional integral, φ : R → R is a
IHPHO with φ(0) = 0 andω(t) ∈ Lp[0, 1](1 ≤ p ≤ ∞) has denumerably many singularities
in the interval (0, 1/2).

We assume that the following conditions are hold throughout the paper:

(H1) f : [0,+∞)→ [0,+∞) is continuous,
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(H2) ∃{tk}∞k=1 3 t1 < 1/2, tk+1 < tk, lim
k→∞

tk = l∗ ≥ 0, lim
t→tk

ω(t) = +∞ and ω(t) 6= 0

for all t ∈ [0, 1]. Further, for 0 ≤ τ ≤ 1, 0 < φ(ψ(τ)) <∞, where

ψ(τ) = φ−1

(∫ τ

0

(τ − x)%−1

Γ(%)
ω(x)dx

)
, 0 < % ≤ 1.

2. Kernel and it’s Bounds

In this section, we introduce some basic definitions and lemmas which are useful for our
later discussions, and construct kernel for the boundary value problem (1). Also, we
establish certain lemmas to estimate bounds for the kernel.

Definition 2.1. [6] The Riemann-Liouville(RL) fractional integral of order δ of a function
f : (0,∞)→ R is defined by

Iδ0+f(s) =

∫ s

0

(s− x)δ−1

Γ(δ)
f(x)dx, δ > 0.

Lemma 2.1. [6, 10] The general solution to Dγ
0+
f(t) = 0 with γ ∈ (m− 1,m] and m > 1

is the function

f(t) =

m∑
k=1

ckt
γ−k,

where ck is a real number.

Lemma 2.2. [6, 10] Let γ > 0. Then for any function f : (0,∞)→ R, we have

Iγ
0+
Dγ

0+
f(t) = f(t) +

m∑
k=1

ckt
γ−k,

where ck is a real number and m ∈ Z is the smallest integer greater that or equal to γ.

Lemma 2.3. Suppose (H1), (H2) and ϑ−%−1 ≥ 0 hold and let κ ∈ C2[0, 1]. The boundary
value problem

Dϑ
0+z(t) + κ(t) = 0, t ∈ (0, 1), (2)

z(0) = 0, D%
0+
z(1) + z(1) = Ia0+z(1), (3)

has a unique solution,

z(t) =

∫ 1

0
N (t, τ)κ(τ)dτ +

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)κ(x)dxdτ,

where

N (t, τ) =


ktϑ−1(1−τ)ϑ−1

Γ(ϑ)
+ ktϑ−1(1−τ)ϑ−%−1

Γ(ϑ−%)
− (t−τ)ϑ−1

Γ(ϑ)
, τ ≤ t,

ktϑ−1(1−τ)ϑ−1

Γ(ϑ)
+ ktϑ−1(1−τ)ϑ−%−1

Γ(ϑ−%)
, t ≤ τ,

χ(t, τ) = Atϑ−1(1− τ)a−1, A =
kΓ(a+ ϑ)

[Γ(a+ ϑ)− kΓ(ϑ)] Γ(a)
, and k =

Γ(ϑ− %)

Γ(ϑ− %) + Γ(ϑ)
.

Proof. The equivalent fractional integral equation to (2) is given by

z(t) = −
∫ t

0

(t− τ)ϑ−1

Γ(ϑ)
κ(τ)dτ + C1t

ϑ−1 + C2t
ϑ−2,

where C1 and C2 are constants. Using boundary conditions (3), we get C2 = 0 and

C1 =

∫ 1

0

[
k(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−%−1

Γ(ϑ− %)

]
κ(τ)dτ + kIa0+z(1).
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Therefore,

z(t) =

∫ 1

0
N (t, τ)κ(τ)dτ + ktϑ−1Ia0+z(1). (4)

Integrating above identity (4), we get

Ia0+z(t) =

∫ 1

0

(t− τ)a−1

Γ(a)

(∫ 1

0
N (τ, x)κ(x)dx

)
dτ + kIa0+z(1)

∫ t

0

(t− x)a−1

Γ(a)
xϑ−1dx.

Substituting t = 1, one can obtained

Ia0+z(1) =

∫ 1

0

(1− τ)a−1

Γ(a)

(∫ 1

0
N (τ, x)κ(x)dx

)
dτ +

k

Γ(a)

(
Γ(a)Γ(ϑ)

Γ(a+ ϑ)

)
Ia0+z(1)

Ia0+z(1) =
Γ(a+ ϑ)

(a+ ϑ)− kΓ(ϑ)

∫ 1

0

(1− τ)a−1

Γ(a)

∫ 1

0
N (τ, x)κ(x)dxdτ.

Hence from (4), we get

z(t) =

∫ 1

0
N (t, τ)κ(τ)dτ +

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)κ(x)dxdτ.

�

Lemma 2.4. The kernel N (t, τ) have the following properties:

(i) N (t, τ) ≥ 0 and continuous on [0, 1]× [0, 1],
(ii) N (t, τ) ≤ N (τ, τ) for t, τ ∈ [0, 1],

(iii) there exists ξ ∈ (0, 1
2) such that ξϑ−1N (1, τ) ≤ N (t, τ) for t ∈ [ξ, 1− ξ], τ ∈ [0, 1].

Proof. (i) For 0 < τ ≤ t < 1, we have −(t− τ)ϑ−1 ≥ tϑ−1(1− t)ϑ−1. So,

N (t, τ) ≥ tϑ−1

[
−(1− t)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−%−1

Γ(ϑ− %)

]
≥ tϑ−1(1− τ)ϑ−1

[
− 1

Γ(ϑ)
+

k

Γ(ϑ)
+
k(1− τ)−%

Γ(ϑ− %)

]
≥ tϑ−1(1− τ)ϑ−1

[
− 1

Γ(ϑ)
+ k

(
1

Γ(ϑ)
+

1

Γ(ϑ− %)

)]
= 0.

Other case is obvious. Moreover, from the definition of N (t, τ), it is clear that N (t, τ) is
continuous on [0, 1]× [0, 1].
(ii) For 0 < τ ≤ t < 1, we have

∂N (t, τ)

∂t
≤ (ϑ− 1)

Γ(ϑ)

[
ktϑ−2

(
1 +

Γ(ϑ)

ϑ− %

)
− (t− τ)ϑ−2

]
≤ (ϑ− 1)

Γ(ϑ)

[
tϑ−2 − (t− τ)ϑ−2

]
< 0.

Other case is clear.
(iii) For 0 < τ ≤ t < 1 and t ∈ [ξ, 1− ξ], we have

N (t, τ) = tϑ−1

[
−(1− (τ/t))ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−%−1

Γ(ϑ− %)

]
= tϑ−1

[
−(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−%−1

Γ(ϑ− %)

]
≥ tϑ−1N (1, τ) ≥ ξϑ−1N (1, τ).
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For 0 < t ≤ τ < 1 and t ∈ [ξ, 1− ξ], we have

N (t, τ) = tϑ−1

[
k(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−%−1

Γ(ϑ− %)

]
≥ tϑ−1

[
−(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−1

Γ(ϑ)
+
k(1− τ)ϑ−%−1

Γ(ϑ− %)

]
≥ tϑ−1N (1, τ) ≥ ξϑ−1N (1, τ).

�

Lemma 2.5. Suppose Γ(a+ ϑ) > kΓ(ϑ) and ξ ∈ (0, 1
2 ]. Then

min
t∈[ξ,1−ξ]

χ(t, τ) ≥ ξϑ−1 max
t∈[0,1]

χ(t, τ).

Proof. From Lemma 2.3,

χ(t, τ) =
kΓ(a+ ϑ)

[Γ(a+ ϑ)− kΓ(ϑ)] Γ(a)
tϑ−1(1− τ)a−1.

Then,
mint∈[ξ,1−ξ] χ(t, τ)

maxt∈[0,1] χ(t, τ)
=
ξϑ−1(1− τ)a−1

(1− τ)a−1
= ξϑ−1.

�

Lemma 2.6. Suppose (H1), (H2) hold, then the unique solution of the problem (1) is given
by

z(t) =

∫ 1

0
N (t, τ)φ−1

(
I%

0+

(
ω(τ)f(z(τ))

))
ds

+

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)φ−1

(
I%

0+

(
ω(x)f(z(x))

))
dxdτ.

Proof. Let Dϑ
0+z(t) = u(t) and v = φ(u). Then by the condition Dϑ

0+z(0) = 0, we have
the following problem

D%
0+
v(t) +ω(t)f(z(t)) = 0, v(0) = 0.

From Lemma 2.2, we see that v(t) = ct%−1− I%
0+

(
ω(t)f(z(t))

)
. Since v(0) = 0, we obtain

v(t) = −I%
0+

(
ω(t)f(z(t))

)
. Hence, from the Lemma 2.4, the problem

Dϑ
0+z(t) = −φ−1

(
I%

0+
(ω(t)f(z(t)))

)
,

D%
0+
z(1) + z(1) = Ia0+z(1), z(0) = 0

}
(5)

has a unique solution

z(t) =

∫ 1

0
N (t, τ)φ−1

(
I%

0+

(
ω(s)f(z(τ))

))
dτ

+

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)φ−1

(
I%

0+

(
ω(x)f(z(x))

))
dxdτ.

�

Let X be the Banach space C([0, 1],R) equipped with the norm ‖z‖ = max
t∈[0,1]

|z(t)|.

Define the cone P ⊂ X by

P =
{
z ∈ X : z(t) is nonnegative on [0, 1]

}
,
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For any z ∈ P, define an operator F : P → X by

(Fz)(t) =

∫ 1

0
N (t, τ)φ−1

(
I%

0+

(
ω(s)f(z(τ))

))
dτ

+

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)φ−1

(
I%

0+

(
ω(x)f(z(x))

))
dxdτ.

Lemma 2.7. Assume that (H1), (H2) hold. Then for each ξ ∈ (0, 1/2), F(P) ⊂ P and
F : P → P is completely continuous.

Proof. Since ω(τ)f(z(τ)) is nonnegative for τ ∈ [0, 1], z ∈ P and N (t, τ) ≥ 0 for all
t, τ ∈ [0, 1], it follows that F(z(t)) ≥ 0 for all t ∈ [0, 1], z ∈ P. Thus F(P) ⊂ P. By
standard methods and application of Arzela-Ascoli theorem, one can prove the operator
F is completely continuous. �

3. Denumerably Infinitely Many Positive Solutions

In this section, we establish the existence of denumerably many positive solutions for
(1) by utilizing the following theorems.

Theorem 3.1. [5] Let E be a cone in a Banach space X and Ω1, Ω2 are open sets with
0 ∈ Ω1,Ω1 ⊂ Ω2. Let A : E ∩ (Ω2\Ω1)→ E be a completely continuous operator such that

(a) ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Ω1, and ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Ω2, or
(b) ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Ω1, and ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Ω2.

Then A has a fixed point in E ∩ (Ω2\Ω1).

Theorem 3.2. (Hölder’s) Let h ∈ Lp[0, 1] and g ∈ Lq[0, 1], where p > 1, q > 1, with
1
p + 1

q = 1. Then hg ∈ L1[0, 1] and ‖hg‖1 ≤ ‖h‖p‖g‖q. Further, if h ∈ L1[0, 1] and

g ∈ L∞[0, 1], then hg ∈ L1[0, 1] and ‖hg‖1 ≤ ‖h‖1‖g‖∞.

Consider the following three possible cases for ω ∈ Lp[0, 1] : 0 < p < 1, p = 1, p =∞.
Firstly, we seek denumerably many positive solutions for the case p > 1.

Theorem 3.3. Suppose (H1)− (H2) hold, let {ξk}∞k=1 be a sequence with tk+1 < ξk < tk.
Let {Ek}∞k=1 and {Ok}∞k=1 be such that

Ek+1 < Ok < αOk < Ek, k ∈ N,

where

α = max

{
1

ξϑ−1
1 σ(ξ1)φ−1

(
I%

0+

(
ω(ξ1)

)) ∫ 1−ξ1
ξ1

N (1, x)dx
, 1

}
.

Assume that f satisfies

(A1) f(z) ≤ φ(M1Ek) for all t ∈ [0, 1], 0 ≤ z ≤ Ek, M1 <
1

(1 +A)‖G(τ, τ)‖q‖ψ‖p
,

(A2) f(z) ≥ φ(αOk) for all t ∈ [ξk, 1− ξk], 0 ≤ z ≤ Ok.
Then the bvp (1) has denumerably many positive solutions {zk}∞k=1 such that Ok ≤ ‖zk‖ ≤
Ek for k = 1, 2, 3 · · · .

Proof. Let Ω1,k = {z ∈ X : ‖z‖ < Ek}, Ω2,k = {z ∈ X : ‖z‖ < Ok} be open subsets of X .
One can observe from (H2) that l∗ < tk+1 < ξk < tk <

1
2 , for all k ∈ N. Let z ∈ P ∩∂Ω1,k.
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Then, z(s) ≤ Ek = ‖z‖ for all s ∈ [0, 1]. By (A1), we have

‖Fz‖ = max
t∈[0,1]

{∫ 1

0
N (t, τ)φ−1

(
I%

0+

(
ω(τ)f(z(τ))

))
dτ

+

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)φ−1

(
I%

0+

(
ω(x)f(z(x))

))
dxdτ

}

≤ max
t∈[0,1]

{
M1Ek

∫ 1

0
N (τ, τ)φ−1

(
I%

0+

(
ω(τ)

))
dτ

+M1Ek

∫ 1

0
χ(t, τ)

∫ 1

0
N (x, x)φ−1

(
I%

0+

(
ω(x)

))
dxdτ

}

≤M1Ek max
t∈[0,1]

{
1 +

∫ 1

0
χ(t, τ)dτ

}∫ 1

0
N (τ, τ)φ−1

(
I%

0+

(
ω(τ)

))
dτ

≤ (1 +A)M1Ek

∫ 1

0
N (τ, τ)ψ(τ)dτ ≤ (1 +A)M1Ek‖N (τ, τ)‖q‖ψ‖p ≤ Ek.

Since Ek = ‖z‖ for z ∈ P ∩ ∂Ω1,k, we get

‖Fz‖ ≤ ‖z‖. (6)

Let t ∈ [ξk, 1− ξk]. Then by (A2), we have

‖Fz‖ = max
t∈[0,1]

{∫ 1

0
N (t, τ)φ−1

(
I%

0+

(
ω(τ)f(z(τ))

))
dτ

+

∫ 1

0
χ(t, τ)

∫ 1

0
N (τ, x)φ−1

(
I%

0+

(
ω(x)f(z(x))

))
dxdτ

}

≥ max
t∈[0,1]

{∫ 1−ξk

ξk

N (t, τ)φ−1
(
I%

0+
(ω(s)f(z(τ)))

)
dτ

+

∫ 1−ξk

ξk

χ(t, τ)

∫ 1−ξk

ξk

N (τ, x)φ−1
(
I%

0+

(
ω(x)f(z(x))

))
dxdτ

}

≥ max
t∈[0,1]

{∫ 1−ξ1

ξ1

N (t, τ)φ−1
(
I%

0+
(ω(s)f(z(τ)))

)
dτ

+

∫ 1−ξ1

ξ1

χ(t, τ)

∫ 1−ξ1

ξ1

N (τ, x)φ−1
(
I%

0+

(
ω(x)f(z(x))

))
dxdτ

}

≥αOkξϑ−1
1 max

t∈[0,1]

{
1 +

∫ 1−ξ1

ξ1

χ(t, τ)dτ

}∫ 1−ξ1

ξ1

N (1, x)φ−1
(
I%

0+

(
ω(ξ1)

))
dx

≥αOkξϑ−1
1 σ(ξ1)φ−1

(
I%

0+

(
ω(ξ1)

)) ∫ 1−ξ1

ξ1

N (1, x)dx

≥Ok = ‖z‖.

Thus, if z ∈ P ∩ ∂Ω2,k, then

‖Fz‖ ≥ ‖z‖. (7)
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It is evident that 0 ∈ Ω2,k ⊂ Ω̄2,k ⊂ Ω1,k. From (6) and (7), it follows from Theorem 3.1
that the operator F has a fixed point zk ∈ P ∩

(
Ω̄1,k\Ω2,k

)
3 Ok ≤ ‖zk‖ ≤ Ek. The proof

is completed. �

For p = 1, we have the following theorem.

Theorem 3.4. Suppose (H1)− (H5) hold, let {ξk}∞k=1 be a sequence with tk+1 < ξk < tk.
Let {Ek}∞k=1 and {Ok}∞k=1 be such that

Ek+1 < Ok < αOk < Ek, k ∈ N,

Assume that f satisfies
(B1) f(z) ≤ φ(M2Ek) for all t ∈ [0, 1], 0 ≤ z ≤ Ek, where

M2 < min

{
1

(1 +A)‖N (τ, τ)‖∞‖ψ‖1
, α

}
and (A2). Then the bvp (1) has denumerably many positive solutions {zk}∞k=1. Further-
more, Ok ≤ ‖zk‖ ≤ Ek for each k ∈ N.

Proof. Let ‖N (τ, τ)‖q‖ψ‖p be replaced by ‖N (τ, τ)‖∞‖ψ‖1 and repeat the argument
above. �

Lastly, the case p =∞.

Theorem 3.5. Assume that (H1)− (H2) hold. Let {Ek}∞k=1 and {Ok}∞k=1 be such that

Ek+1 < Ok < αOk < Ek, k ∈ N,

Assume that f satisfies
(E1) f(z) ≤ φ(M3Ek) for all t ∈ [0, 1], 0 ≤ z ≤ Ek, where

M3 < min

{
1

(1 +A)‖N (τ, τ)‖1‖ψ‖∞
, α

}
and (A2). Then the bvp (1) has denumerably many positive solutions {zk}∞k=1 such that
Ok ≤ ‖zk‖ ≤ Ek for k = 1, 2, 3, · · ·.

Proof. Let ‖N (τ, τ)‖q‖ψ‖p be replaced by ‖N (τ, τ)‖1‖ψ‖∞ and repeat the argument
above. �

4. Examples

In this section, we present an example to check validity of our main results.
Example 4.1. Consider the following fractional order boundary value problem,

D
3/4
0+

(
φ(D

7/4
0+
z(t))

)
+ω(t)f(z(t)) = 0, t ∈ (0, 1),

z(0) = D
7/4
0+
z(0) = 0, z(1) + D

3/4
0+
z(1) = I2

0+z(1),

 (8)

where

φ(z) =


z5

1 + z2
, z ≤ 0,

z2, z > 0,
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f(z) =



11
5
× 10−8, z ∈ (10−4,+∞),

9
2
×10−(8k+4)− 11

5
×10−8k

10−2(2k+1)−10−4k (z − 10−4k) + 11
5
× 10−8k,

z ∈
[
10−2(2k+1), 10−4k

]
,

9
2
× 10−(8k+4), z ∈

(
1

53/4
× 10−(4k+2), 10−(4k+2)

)
,

9
2
×10−(8k+4)− 47

5
×10−(8k+8)

1

53/4
×10−(4k+2)−10−(4k+4) (z − 10−(4k+4)) + 11

5
× 10−(8k+8),

z ∈
(
10−(4k+4), 1

53/4
× 10−(4k+2)

]
,

0, z = 0,

and let

ω(t) =
∞∑
k=1

ωk(t),

in which

ωk(τ) =



2%%

(2k − 1)(2k + 1)(2% − (2− tk+1 − tk)%)
, 0 ≤ τ < tk+1 + tk

2
,

1
η(tk−τ)1/2(1−τ)%−1 ,

tk+1+tk
2 ≤ τ < tk,

1
η(τ−tk)1/2(1−τ)%−1 , tk < τ ≤ tk+tk−1

2 ,

0,
tk+tk−1

2 < τ < t1,

%
2(2k−1)(2k+1)(1−t1)% , t1 ≤ τ ≤ 1,

and

η =

√
2

6

(
4π2 − 27

)
, tk =

31

64
−

k∑
j=1

1

4(j + 1)4
, k = 1, 2, 3, · · · .

Let

p = q = 2, tk =
31

64
−

k∑
j=1

1

4(j + 1)4
, for k = 1, 2, 3, · · · , ξk =

1

2
(tk + tk+1),

then

ξ1 =
15

32
− 1

648
<

15

32
, ξk >

1

5
tk+1 < ξk < tk.

Therefore,

ξα−1
k > 5−3/4, k = 1, 2, 3, · · · .

It is easy to see

t1 =
15

32
<

1

2
, for k = 1, 2, 3, · · · , tk − tk+1 =

1

4(k + 2)4
.
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Since
∞∑
k=1

1

k2
=
π2

6
and

∞∑
k=1

1

k4
=
π4

90
, it follows that

l∗ = lim
k→∞

tk =
31

64
−
∞∑
j=1

1

4(j + 1)4
=

47

64
− π4

360
>

1

5
,

and

I%
0+
ω(1) =

1

Γ(%)

∫ 1

0
(1− τ)%−1ω(τ)dτ =

1

Γ(%)

∞∑
k=1

∫ 1

0
(1− τ)%−1ωk(τ)dτ

=
1

Γ(%)

∞∑
k=1

[
3

2(2k − 1)(2k + 1)
+

∫ tk

tk+1+tk
2

√
2

η(tk − τ)1/2
dτ +

∫ tk+tk−1
2

tk

√
2

η(τ − tk)1/2
dτ

]

=
1

Γ(%)

{
3

4
+

1√
2η

∞∑
k=1

[
1

(k + 1)2
+

1

(k + 2)2

]}
=

1

Γ(%)

{
3

4
+

1√
2η

[
π2

3
− 9

4

]}
=

1

Γ(%)
.

It follows that

φ−1(I%
0+
ω(1)) =

1√
Γ(%)

,

and ‖ψ(1)‖2 =

[ ∫ 1

0
[φ−1(I%

0+
ω(1))]2ds

]1/2

=
1√
Γ(%)

≈ 0.9033542711.

I%
0+
ω(ξ1) =

1

Γ(%)

∫ ξ1

0
(ξ1 − s)%−1ω(s)ds =

1

Γ(%)

∫ ξ1

0
(ξ1 − s)%−1ω1(s)ds

=
1

Γ(%)

∫ ξ1

0

%(ξ1 − s)%−1

3[1− (1− ξ1)%]
ds =

ξ1
%

3Γ(%)[1− (1− ξ1)%]
,

φ−1
(
I%

0+

(
ω(ξ1)

))
=

ξ1
%/2√

3Γ(%)[1− (1− ξ1)%]
≈ 0.6390712607. It follows from a simple

calculations, we obtained∫ 1−ξ1

ξ1

N (1, τ)dτ >

∫ 1−15/32

15/32

[
(k − 1)(1− τ)ϑ−1

Γ(ϑ)
+

(1− τ)ϑ−%−1

Γ(ϑ− %)

]
dτ

≈ 1.171656594,

ξϑ−1
1 σ(ξ1)φ−1

(
I%

0+

(
ω(ξ1)

)) ∫ 1−ξ1

ξ1

N (1, s)ds > 2.11819593108,

∫ 1

0
|N (τ, τ)|2dτ =

∫ 1

0

∣∣∣∣kτϑ−1(1− τ)ϑ−%−1

Γ(ϑ)
− kτϑ−1(1− τ)ϑ−%−1

Γ(ϑ− %)

∣∣∣∣2 dτ = 0.44187,

and

‖N (τ, τ)‖2 =

[ ∫ 1

0
|N (τ, τ)|2dτ

]1/2

≈ 0.46842,

so that

M1 = 1.491599442 =
1

(1 +A)‖N (τ, τ)‖2‖ψ(1)‖2
<

1

(1 +A)‖N (τ, τ)‖2‖ψ(τ)‖2
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and

α = max

{
1

ξϑ−1
1 σ(ξ1)φ−1

(
I%

0+

(
ω(ξ1)

)) ∫ 1−ξ1
ξ1

N (1, x)dx
, 1

}
= max{2.11819593108, 1} = 2.11819593108.

Now, taking

Ok = 10−2(2k+1) and Ek = 10−4k,

then

Ek+1 = 10−(4k+4) <
1

53/4
× 10−(4k+2) < ξϑ−1

k Ok

< Ok = 10−(4k+2) < Ek = 10−4k,

αOk = 2.11819593108× 10−2(2k+1) < 1.491599442× 10−4k = M1Ek.
Also, f satisfies conditions:

f(z) ≤φ(M1Ek) = M2
1E

2
k = 2.224868895× 10−8k, z ∈

[
0, 10−4k

]
f(z) ≥φ(αOk) = α2O2

k

= 4.48675400244× 10−(8k+4), z ∈
[

1

53/4
× 10−2(2k+1), 10−2(2k+1)

]
.

Hence, by Theorem 3.2, the bvp (8) has denumerably infinitely many positive solutions

{z[k]}∞k=1 with 10−2(2k+1) ≤ ‖z[k]‖ ≤ 10−4k for k ∈ N.

5. Conclusion

We derived sufficient conditions for the existence of denumerably many positive solutions
for Riemann-Liouville fractional order boundary value problem with denumerably many
singularities by using Krasnoselskii’s cone fixed point theorem on a Banach space.
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