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A NOTE ON HERMITE MATRIX BASED NARUMI POLYNOMIALS

M. ALI1∗, M. I. QURESHI1, §

Abstract. In this article, the 2-index 2-variable Hermite matrix based Narumi poly-
nomials are introduced by means of generating function. Some important properties
including operational representation and quasi-monomiality of these polynomials are es-
tablished. For suitable values of indices and variables, the 2-index 2-variable Hermite
matrix polynomials yield several special matrix polynomials. Consequently, the results
for the corresponding new special polynomials related to Narumi polynomials are pre-
sented.
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miality principle; Operational techniques.

AMS Subject Classification: 33C45, 33C99, 33E20.

1. Introduction and preliminaries

The special polynomials with matrix parameters provide the solutions of special matrix
differential equations. These matrix differential equations are the systems of differential
equations, each of which is satisfied by the corresponding scalar special polynomial. In the
same way the other results for special matrix polynomials like generating functions, series
definitions, recurrence relations etc. can be viewed as the systems of equations, which are
satisfied by the corresponding scalar special polynomials.

If A is a matrix in Cr×r (r ∈ N), its spectrum σ(A) denotes the set of all the eigenvalues
of A and the 2-norm of A, denoted by ‖A‖, is defined by

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖2

, (1)
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where ‖y‖2 = (yT y) is the Euclidean norm of any y in Cr×r (r ∈ N). The real numbers
α(A) and β(A) are defined by

α(A) = max{Re(z) : z ∈ σ(A)}, β(A) = min{Re(z) : z ∈ σ(A)}. (2)

A matrix A in Cr×r (r ∈ N) is said to be positive stable if

Re(µ)6≤ 0, µ ∈ σ(A), σ(A) := spectrum of A. (3)

If f(z) and g(z) are holomorphic functions in an open set Ω of the complex plane and
if σ(A) ⊂ Ω, then from the Riesz-Dunford functional calculus [5, p. 558]:

f(A)g(A) = g(A)f(A), (4)

where f(A) and g(A) denote the images of functions f(z) and g(z) respectively, acting on
the matrix A.

If D0 is the complex plane cut along the negative real axis and log(z) denotes the prin-

cipal logarithm of z, then z1/2 represents exp(12 log(z)). If matrix A ∈ Cr×r (r ∈ N) with

σ(A)⊂ D0, then A1/2 =
√
A denotes the image by z1/2 of the matrix functional calculus

acting on the matrix A.

Recall that the 2-index 2-variable Hermite Matrix polynomials (2I2VHMP)Hn,m(x, y;A)
are defined by the following generating function [9]:

exp(xt
√
mA− ytmI) =

∞∑
n=0

Hn,m(x, y;A)
tn

n!
, (5)

with m must be a positive integer and I is the unit matrix in Cr×r (r ∈ N).

The Hn,m(x, y;A) have the following explicit representation:

Hn,m(x, y;A) = n!

[ n
m
]∑

k=0

(−1)kyk(x
√
mA)n−mk

k!(n−mk)!
(6)

and the differential equation satisfied by Hn,m(x, y;A) is [9](
my(
√
mA)−m

∂m

∂xm
− x ∂

∂x
+ n

)
Hn,m(x, y;A) = 0. (7)

For suitable values of the indices and variables, number of known special polynomials
as special cases of the 2I2VHMP Hn,m(x, y;A) are mentioned in the following table.
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Table 1. Some special cases of the 2I2VHMP Hn,m(x, y;A)

S. No. Values of the Relation between Name of the known Generating function
indices and Hn,m(x, y;A) and its polynomials
variables special cases

I. m = 2 2-variable Hermite matrix exp(xt
√
2A− yt2I)

Hn,2(x, y;A) = Hn(x, y, A) polynomials Hn(x, y;A) [2] =
∑∞

n=0 Hn(x, y;A) tn

n!

II. m = 2; x→ x
2 , 2-variable Hermite matrix exp(xt

√
A
2 + yt2I)

y → −y Hn,2

(
x
2 ,−y;A

)
= Hn(x, y;A) polynomials of the second form =

∑∞
n=0Hn(x, y;A) tn

n!
Hn(x, y;A) [8]

III. y = 1 Generalized Hermite matrix exp(xt
√
mA− tmI)

Hn,m(x, 1;A) = Hn,m(x,A) polynomials Hn,m(x;A) [11] =
∑∞

n=0 Hn,m(x;A) tn

n!

IV. m = 2; y = 1 Hermite matrix polynomials exp(xt
√
2A− t2I)

Hn,2(x, 1;A) = Hn(x,A) Hn(x;A) [6]
∑∞

n=0 Hn(x;A) tn

n!

The idea of monomiality arised within the context of poweroid, suggested by J. F.
Steffenson [12]. The monomiality principle is reformulated and developed by Dattoli [3],
according to which, the polynomial set {pn(x)}n∈N is “quasi-monomial”, provided there

exist two operators M̂ and P̂ playing, respectively, the role of multiplicative and derivative
operators, for the family of polynomials. These operators satisfy the following identities:

M̂ {pn(x)} = pn+1(x) (8)

and

P̂ {pn(x)} = n pn−1(x), (9)

for all n ∈ N. The operators M̂ and P̂ also satisfy the commutation relation

[P̂ , M̂ ] = P̂ M̂ − M̂P̂ = 1̂ (10)

and thus display the Weyl group structure. If the considered polynomial set {pn(x)}n∈N is

quasi-monomial, its properties can easily be derived from those of the M̂ and P̂ operators.
In fact:

(i) Combining recurrences (8) and (9), we have

M̂ P̂{pn(x)} = n pn(x), (11)

which can be interpreted as the differential equation satisfied by pn(x), if M̂ and

P̂ have a differential realization.
(ii) Assuming here and in the sequel p0(x) = 1, then pn(x) can be explicitly constructed

as:

pn(x) = M̂n{1}, (12)

which yields the series definition for pn(x).
(iii) Identity (12) implies that the exponential generating function of pn(x) can be given

in the form:

exp (tM̂){1} =

∞∑
n=0

pn(x)
tn

n!
, |t| <∞. (13)

The 2I2VHMP Hn,m(x, y;A) are shown to be quasi-monomial under the action of the
following multiplicative and derivative operators [9]:

M̂H := x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
(14)
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and

P̂H :=
1√
mA

∂

∂x
, (15)

respectively.

The Narumi polynomials N
(a)
n (x) [1] are defined by the following generating function:(
t

ln(1 + t)

)a

(1 + t)x =
∞∑
n=0

N (a)
n (x)

tn

n!
(16)

or (
t

ln(1 + t)

)a

exp (x ln(1 + t)) =
∞∑
n=0

N (a)
n (x)

tn

n!
. (17)

The article is organized as: In Section 2, the 2-index 2-variable Hermite matrix based
Narumi polynomials are introduced and framed within the context of monomiality prin-
ciple. In Section 3, some examples are considered.

2. 2-index 2-variable Hermite matrix based Narumi polynomials

To introduce the 2-index 2-variable Hermite matrix based Narumi polynomials (2I2VHMNP)

denoted by HN
(a)
n,m(x, y;A), we prove the following result:

Theorem 2.1. For the 2I2VHMNP HN
(a)
n,m(x, y;A), the following generating function

holds true:(
t

ln(1 + t)

)a

exp
(
x
√
mA ln(1 + t))− y(ln(1 + t))mI

)
=

∞∑
n=0

HN
(a)
n,m(x, y;A)

tn

n!
. (18)

Proof. Replacing x in the l.h.s. and r.h.s of equation (17) by the multiplicative operator

M̂H of the 2I2VHMP we have,(
t

ln(1 + t)

)a

exp(M̂H ln(1 + t)) =
∞∑
n=0

N (a)
n (M̂H)

tn

n!
. (19)

On using equation (14) and denoting resultant 2I2VHMNP in the r.h.s. by HN
(a)
n,m(x, y;A)

that is

N (a)
n (M̂H) = N (a)

n

(
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1

)
= HN

(a)
n,m(x, y;A), (20)

we obtain(
t

ln(1 + t)

)a

exp

((
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1

)
ln(1 + t)

)
=

∞∑
n=0

HN
(a)
n,m(x, y;A))

tn

n!

(21)
or(

t

ln(1 + t)

)a

exp

((
x
√
mA−my ∂m−1

∂(x
√
mA)m−1

)
ln(1 + t)

)
=
∞∑
n=0

HN
(a)
n,m(x, y;A)

tn

n!
.

(22)
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Now, decoupling the exponential in l.h.s of equation (22) by using the Crofton-type
identity [4, p. 12]:

f

(
x+mλ

dm−1

dxm−1

)
{1} = exp

(
λ
dm

dxm

)
{f(x)}, (23)

we obtain(
t

ln(1 + t)

)a

exp

(
−y ∂m

∂(x
√
mA)m

)
exp

(
x
√
mA ln(1 + t)

)
=

∞∑
n=0

HN
(a)
n,m(x, y;A)

tn

n!
.

(24)
On expanding the first exponential in above equation, we obtain assertion (18).

�

From equation (18), the following relation is obtained:

∂

∂y
HN

(a)
n,m(x, y;A) = −(

√
mA)−m

∂m

∂xm
HN

(a)
n,m(x, y;A). (25)

Corollary 2.1. The following operational representation connecting the 2I2VHMNP HN
(a)
n,m(x, y;A)

with the Narumi polynomials N
(a)
n (x) holds true:

HN
(a)
n,m(x, y;A) = exp

(
−y ∂m

∂(x
√
mA)m

)
N (a)

n (x
√
mA). (26)

Proof. From equation (20), we can write

HN
(a)
n,m(x, y;A) = N (a)

n

(
x
√
mA−my ∂m−1

∂(x
√
mA)m−1

)
. (27)

Using equation (23), assertion (26) follows.
�

In order to frame the 2I2VHMNP HN
(a)
n,m(x, y;A) within the context of monomiality

principle formalism, we prove the following result:

Theorem 2.2. The 2I2VHMNP HN
(a)
n,m(x, y;A) are quasi monomial under the action of

the following multiplicative and derivative operators:

M̂HN :=

x√mA−my(
√
mA)−(m−1)

∂m−1

∂xm−1
+
a
(
e

Dx√
mA

(
Dx√
mA
− 1
)

+ 1
)

(
e

Dx√
mA − 1

)
Dx√
mA

 1

e
Dx√
mA

(28)

and

P̂HN := e
Dx√
mA − 1, (29)

respectively.

Proof. Consider the following identity:

Dx

{(
t

ln(1 + t)

)a

exp
(
x
√
mA ln(1 + t)− y(ln(1 + t))mI

)}
=
√
mA ln(1 + t)

{(
t

ln(1 + t)

)a

exp
(
x
√
mA ln(1 + t)− y(ln(1 + t))mI

)}
(30)
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or (
e

Dx√
mA − 1

){( t

ln(1 + t)

)a

exp
(
x
√
mA ln(1 + t)− y(ln(1 + t))mI

)}
= t

{(
t

ln(1 + t)

)a

exp
(
x
√
mA ln(1 + t)− y(ln(1 + t))mI

)}
. (31)

Differentiating equation (19) partially with respect to t and using equation (20) in the
r.h.s. of the resultant equation, we find((

M̂H +
a((1 + t) ln(1 + t)− t)

t ln(1 + t)

)
1

(1 + t)

){(
t

ln(1 + t)

)a

exp(M̂H ln(1 + t))

}

=

∞∑
n=0

HN
(a)
n+1,m(x, y;A)

tn

n!
,

which on using expression of M̂H and equation (23) gives((
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
+
a((1 + t) ln(1 + t)− t)

t ln(1 + t)

)
1

(1 + t)

)
{(

t

ln(1 + t)

)a

exp
(
x
√
mA ln(1 + t)− y(ln(1 + t))mI

)}
=
∞∑
n=0

HN
(a)
n+1,m(x, y;A)

tn

n!
.

In view of relation (31), the above equation becomes
x√mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
+
a
(
e

Dx√
mA

(
Dx√
mA
− 1
)

+ 1
)

(
e

Dx√
mA − 1

)
Dx√
mA

 1

e
Dx√
mA

 ∞∑
n=0

HN
(a)
n,m(x, y;A)

tn

n!

=
∞∑
n=0

HN
(a)
n+1,m(x, y;A)

tn

n!
. (32)

Rearranging the summation and then equating the coefficients of like powers of t on
both sides of the above equation, assertion (28) is obtained.

Making use of generating function (18) in both sides of identity (31), we have(
e

Dx√
mA − 1

) ∞∑
n=0

HN
(a)
n,m(x, y;A)

tn

n!
=
∞∑
n=0

n HN
(a)
n−1,m(x, y;A)

tn

n!
. (33)

Rearranging the summation in the l.h.s. and then equating the coefficients of like powers
of t on both sides of the above equation, assertion (29) is obtained. �

Remark 2.1. Using equations (28) and (29) in monomiality equation (11), we deduce
the following consequence of Theorem 2.2:

Corollary 2.2. The 2I2VHMNP HN
(a)
n,m(x, y;A) satisfy the following differential equation:

x√mA−my(
√
mA)−(m−1)

∂m−1

∂xm−1
+
a
(
e

Dx√
mA

(
Dx√
mA
− 1
)

+ 1
)

(
e

Dx√
mA − 1

)
Dx√
mA


(
e

Dx√
mA − 1

)
e

Dx√
mA

− n


×HN

(a)
n,m(x, y;A) = 0. (34)
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We have mentioned special cases of the 2I2VHMP Hn,m(x, y;A) in Table 1. Now, for

the same choice of the variables and indices, the 2I2VHMNP HN
(a)
n,m(x, y;A) reduce to

the corresponding special case. We mention these new special polynomials related to the
Narumi polynomials in the following table.

Table 2. Special cases of the 2I2VHMNP HN
(a)
n,m(x, y;A)

S. No. Values of the Relation between Name of the
indices and Hn,m(x, y;A) and its polynomials
variables special cases

I. m = 2 2-variable Hermite matrix-Narumi

HN
(a)
n,2(x, y;A) = HN(a)

n (x, y;A) polynomials HN(a)
n (x, y;A)

II. m = 2; x→ x
2 , 2-variable Hermite matrix-Narumi

y → −y HN
(a)
n,2(

x
2 ,−y;A) = HN(a)

n (x, y;A) polynomials of the second form

HN(a)
n (x, y;A)

III. y = 1 Generalized Hermite matrix-Narumi

HN(a)
n,m(x, 1;A) = HN(a)

n,m(x;A) polynomials HN(a)
n,m(x;A)

IV. m = 2; y = 1 Hermite matrix-Narumi polynomials

HN
(a)
n,2(x, 1;A) = HN(a)

n (x;A) HN(a)
n (x;A)

Remark 2.2. To find recurrence three term formula and investigating orthogonality prob-
lem are not possible at this stage. The orthogonality of mixed special polynomials have not
been studied so far. Efforts are being done to study orthogonality of mixed special polyno-
mials in future works. To study combinatorial properties of the mixed special polynomials
will also be taken as future aspect.

In the next section, corresponding to the new families of special matrix polynomials
related to the Narumi polynomials given in Table 2, we obtain the results for these mixed
type special matrix polynomials.

3. Examples

In order to obtain the results for the corresponding new special matrix polynomials
related to the Narumi polynomials, we consider the following examples:

1. Taking m = 2 in Theorems 2.1, 2.2 and Corollary 2.2, we get the following results for

2-variable Hermite matrix-Narumi polynomials HN
(a)
n (x, y;A):

Table 3. Results for the HN
(a)
n (x, y;A)

S.No. Results Mathematical Expressions

1. Generating
(

t
ln(1+t)

)a
exp

(
x
√
2A ln(1 + t))− y(ln(1 + t))2I

)
=
∑∞

n=0 HN(a)
n (x, y;A) tn

n!

function

2. Multiplicative and M̂ :=


x
√
2A− 2y(

√
2A)−1 ∂

∂x +

a

e

Dx√
2A

(
Dx√
2A
−1

)
+1


e

Dx√
2A −1

 Dx√
mA

 1

e

Dx√
2A


derivative operators P̂ := e

Dx√
2A − 1

3. Differential equation


x
√
2A− 2y(

√
2A)−1 ∂

∂x +

a

e

Dx√
2A

(
Dx√
2A
−1

)
+1


e

Dx√
2A −1

 Dx√
mA

 e

Dx√
2A −1

e

Dx√
2A

− n

HN(a)
n (x, y;A) = 0
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2. Taking m = 2; x → x
2 , y → −y in Theorems 2.1, 2.2 and Corollary 2.2, we get the

following results for 2-variable Hermite matrix-Narumi polynomials of the second form

HN
(a)
n (x, y;A):

Table 4. Results for the HN
(a)
n (x, y;A)

S.No. Results Mathematical Expressions

1. Generating
(

t
ln(1+t)

)a
exp

(
x
√

A
2 ln(1 + t)) + y(ln(1 + t))2I

)
=
∑∞

n=0 HN(a)
n (x, y;A)

function

2. Multiplicative and M̂ :=


x
√

A
2 + 2y

√
2
A

∂
∂x +

a

e

√
2
A

Dx
(√

2
A

Dx−1

)
+1


e

√
2
A

Dx−1

 Dx√
mA

 1

e

√
2
A

Dx


derivative operators P̂ := e

√
2
A

Dx − 1

3. Differential equation


x
√

A
2 + 2y

√
2
A

∂
∂x +

a

e

√
2
A

Dx
(√

2
A

Dx−1

)
+1


e

√
2
A

Dx−1

 Dx√
mA

 e

√
2
A

Dx−1

e

√
2
A

Dx
− n

HN(a)
n (x, y;A) = 0

3. Taking y = 1 in Theorems 2.1, 2.2 and Corollary 2.2, we get the following results for

Generalized Hermite matrix-Narumi polynomials HN
(a)
n,m(x;A):

Table 5. Results for the HN
(a)
n,m(x;A)

S.No. Results Mathematical Expressions

1. Generating
(

t
ln(1+t)

)a
exp

(
x
√
mA ln(1 + t))− (ln(1 + t))mI

)
=
∑∞

n=0 HN(a)
n,m(x;A) tn

n!

function

2. Multiplicative and M̂ :=


x
√
mA−m(

√
mA)−(m−1) ∂m−1

∂xm−1 +

a

e

Dx√
mA

(
Dx√
mA
−1

)
+1


e

Dx√
mA −1

 Dx√
mA

 1

e

Dx√
mA


derivative operators P̂ := e

Dx√
mA − 1

3.

Differential equation


x
√
mA−m(

√
mA)−(m−1) ∂m−1

∂xm−1 +

a

e

Dx√
mA

(
Dx√
mA
−1

)
+1


e

Dx√
mA −1

 Dx√
mA

 e

Dx√
mA −1

e

Dx√
mA

− n

HN(a)
n,m(x;A) = 0

4. Taking m = 2; y = 1 in Theorems 2.1, 2.2 and Corollary 2.2, we get the following

results for Hermite matrix-Narumi polynomials HN
(a)
n (x;A):

Table 6. Results for the HN
(a)
n (x;A)

S.No. Results Mathematical Expressions

1. Generating
(

t
ln(1+t)

)a
exp

(
x
√
2A ln(1 + t))− (ln(1 + t))2I

)
=
∑∞

n=0 HN(a)
n (x;A) tn

n!

function

2. Multiplicative and M̂ :=


x
√
2A− 2(

√
mA)−1 ∂

∂x +

a

e

Dx√
2A

(
Dx√
2A
−1

)
+1


e

Dx√
2A −1

 Dx√
mA

 1

e

Dx√
2A


derivative operators P̂ := e

Dx√
2A − 1

3. Differential equation


x
√
2A− 2(

√
mA)−1 ∂

∂x +

a

e

Dx√
2A

(
Dx√
2A
−1

)
+1


e

Dx√
2A −1

 Dx√
mA

 e

Dx√
2A −1

e

Dx√
2A

− n

HN(a)
n (x;A) = 0
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The Narumi polynomials N
(a)
n (x) reduce to the Bernoulli polynomials of the second

kind bn(x) for a = 1. The Bernoulli polynomials of the second kind bn(x) are defined by
the following generating function [10]:(

t

ln(1 + t)

)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n!
(35)

or (
t

ln(1 + t)

)
exp (x ln(1 + t)) =

∞∑
n=0

bn(x)
tn

n!
. (36)

Thus, taking a = 1 in the results of the 2I2VHMNP HN
(a)
n,m(x, y;A), we obtain the

following results for the 2-index 2-variable Hermite matrix-Bernoulli polynomials of the
second kind Hbn,m(x, y;A):

Table 7. Results for the Hbn,m(x, y;A)

S.No. Results Mathematical Expressions

1. Generating
(

t
ln(1+t)

)
exp

(
x
√
mA ln(1 + t))− y(ln(1 + t))mI

)
=
∑∞

n=0 Hbn,m(x, y;A) tn

n!

function

2. Multiplicative and M̂ :=


x
√
mA−my(

√
mA)−(m−1) ∂m−1

∂xm−1 +

e

Dx√
mA

(
Dx√
mA
−1

)
+1


e

Dx√
mA −1

 Dx√
mA

 1

e

Dx√
mA


derivative operators P̂ := e

Dx√
mA − 1

3.

Differential equation


x
√
mA−my(

√
mA)−(m−1) ∂m−1

∂xm−1 +

e

Dx√
mA

(
Dx√
mA
−1

)
+1


e

Dx√
mA −1

 Dx√
mA

 e

Dx√
mA −1

e

Dx√
mA

− n

Hbn,m(x, y;A) = 0

The Narumi polynomials N
(a)
n (x) reduce to the lower factorial polynomials (x)n for

a = 0. The lower factorial polynomials (x)n are defined by the following generating
function [10]:

(1 + t)x =
∞∑
n=0

(x)n
tn

n!
(37)

or

exp(x ln(1 + t)) =
∞∑
n=0

(x)n
tn

n!
. (38)

Thus, taking a = 0 in the results of the 2I2VHMNP HN
(a)
n,m(x, y;A), we obtain the

following results for the 2-index 2-variable Hermite matrix-lower factorial polynomials

H(x, y;A)n,m:
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Table 8. Results for the H(x, y;A)n,m

S.No. Results Mathematical Expressions

1. Generating exp
(
x
√
mA ln(1 + t))− y(ln(1 + t))mI

)
=
∑∞

n=0 H(x, y;A)n,m
tn

n!

function

2. Multiplicative and M̂ :=
(
x
√
mA−my(

√
mA)−(m−1) ∂m−1

∂xm−1

)
1

e

Dx√
mA

derivative operators P̂ := e
Dx√
mA − 1

3.

Differential equation

(x√mA−my(
√
mA)−(m−1) ∂m−1

∂xm−1

) e

Dx√
mA −1


e

Dx√
mA

− n

H(x, y;A)n,m = 0

4. Concluding remarks

Recently, the Hermite-Appell matrix polynomials (HAMP) HR
(m,s)
n (x, y, z;A) are in-

troduced by the following generating function [7]:

A(t) exp(xt
√
mA− ytm + zts) =

∞∑
n=0

HR
(m,s)
n (x, y, z;A)

tn

n!
. (39)

The HAMP HR
(m,s)
n (x, y, z;A) are shown to be quasi-monomial w.r.t to the following

multiplicative and derivative operators [7]:

M̂HA :=

x√mA−my(
√
mA)−(m−1)

∂m−1

∂xm−1
+ sz(

√
mA)−(s−1)

∂s−1

∂xs−1
+
A′
(

Dx√
mA

)
A
(

Dx√
mA

)

(40)

and

P̂HA :=
1√
mA

Dx, (41)

respectively.

Here, we introduce the Hermite-Appell matrix based Narumi polynomials.

In order to derive the generating function for the Hermite-Appell matrix based Narumi

polynomials, we take the Hermite-Appell matrix polynomials HR
(m,s)
n (x, y, z;A) as base in

generating function (17) of the Narumi polynomials. Thus, replacing x by the multiplica-

tive operator M̂HA of the Hermite-Appell matrix polynomials HR
(m,s)
n (x, y, z;A) in the

l.h.s. of equation (17) and denoting the resultant Hermite-Appell matrix based Narumi

polynomials in the r.h.s. by
HRN

(m,s,a)
n (x, y, z;A), we have(

t

ln(1 + t)

)a

exp
(
M̂HA ln(1 + t)

)
=
∞∑
n=0

HRN
(m,s,a)
n (x, y, z;A)

tn

n!
, (42)

which by virtue of equation (13) with t replaced by ln(1 + t) and then using equation (39)
in the resultant equation, the following generating function for the Hermite-Appell matrix

based Narumi polynomials HR
(m,s)
n (x, y, z;A) is obtained:(

t

ln(1 + t)

)a

A(ln(1 + t)) exp(x(ln(1 + t))
√
mA− y(ln(1 + t))m + z(ln(1 + t))s)
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=
∞∑
n=0

HRN
(m,s,a)
n (x, y, z;A)

tn

n!
. (43)

Since for A(t) =
(

t
et−1

)
, A(t) =

(
2

et+1

)
and A(t) =

(
2t

et+1

)
, the 2D-Appell poly-

nomials R
(s)
n (x, y) become the 2D-Bernoulli polynomials B

(s)
n (x, y), 2D-Euler polynomi-

als E
(s)
n (x, y) and 2D-Genocchi polynomials G

(s)
n (x, y), respectively. Therefore, taking

A(ln(1 + t)) =
(

ln(1+t)

eln(1+t)−1

)
, A(ln(1 + t)) =

(
2

eln(1+t)+1

)
and A(ln(1 + t)) =

(
2 ln(1+t)

eln(1+t)+1

)
in

equation (43), we get the following generating functions for the Hermite-2D-Bernoulli

matrix based Narumi polynomials HB
(m,s)
n (x, y, z;A), Hermite-2D-Euler matrix based

Narumi polynomials HE
(m,s)
n (x, y, z;A) and Hermite-2D-Genocchi matrix based Narumi

polynomials HG
(m,s)
n (x, y, z;A), respectively:(

t

ln(1 + t)

)a ( ln(1 + t)

eln(1+t) − 1

)
exp(x(ln(1 + t))

√
mA− y(ln(1 + t))m + z(ln(1 + t))s)

=
∞∑
n=0

HBN
(m,s,a)
n (x, y, z;A)

tn

n!
, (44)

(
t

ln(1 + t)

)a ( 2

eln(1+t) + 1

)
exp(x(ln(1 + t))

√
mA− y(ln(1 + t))m + z(ln(1 + t))s)

=
∞∑
n=0

HEN
(m,s,a)
n (x, y, z;A)

tn

n!
(45)

and(
t

ln(1 + t)

)a ( 2 ln(1 + t)

eln(1+t) + 1

)
exp(x(ln(1 + t))

√
mA− y(ln(1 + t))m + z(ln(1 + t))s)

=
∞∑
n=0

HGN
(m,s,a)
n (x, y, z;A)

tn

n!
. (46)

Advancement in the theory of generalized and multi-variable forms of special functions
serves as an analytical foundation for the majority of problems in mathematical physics
that have been solved exactly and find broad practical applications. For example, the
generalized Hermite polynomials are used to deal with quantum mechanical and optical
beam transport problems. Further, an important generalization of special functions is
special matrix functions. The study of special matrix polynomials is important due to
their applications in certain areas of statistics, physics and engineering. In this paper, the
hybrid special matrix polynomials are introduced by making use of operational identities
for decoupling of exponential operators. Also, the concept associated with monomiality
principle are used to establish their properties.
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