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IDENTIFYING CYCLIC AND (1 + 2v)-CONSTACYCLIC CODES OVER

Z4[v]/〈v3 − 1〉 WITH Z4-LINEAR CODES

ST T. KOM1∗, O. RATNABALA DEVI1, §

Abstract. This paper studies cyclic and (1 + 2v)-constacyclic codes over the ring
Z4[v]/〈v3 − 1〉. By introducing three different Gray maps, we show that the Gray images
of cyclic codes are quasi-cyclic codes over Z4 and that of (1 + 2v)-constacyclic codes are
cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes over Z4. Moreover,
we show that the Gray image of skew (1 + 2v)-constacyclic code is a quasi-cyclic code
over Z4.

Keywords: Cyclic code, Gray map, constacyclic code, quasi-cyclic code, skew consta-
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1. Introduction

The study of linear codes over finite rings has been initiated since the early 1970s. The
discovery of specific good binary non-linear codes from cyclic codes over Z4 via the Gray
map in [7] has a paradigm shift in the studies of codes towards finite rings. Since then, the
finite ring Z4 and its extension rings occupy a special place in coding theory. Cyclic codes
are the important class of linear codes over finite rings and have been studied extensively
by many researchers on various rings [1, 6, 14].

In recent years various researchers have done extensive research on cyclic codes and their
generalizations such as skew-cyclic codes, constacyclic codes, skew-constacyclic codes and
other codes over different finite rings [2, 3, 4, 8, 10, 12, 13, 17]. The rings of order 16 that
are extensions of Z4 have been immensely studied by many researchers after the introduc-
tion of linear and cyclic codes over Z4 + uZ4, u

2 = 0 in [22]. For instance, Özen et al. [15]
studied cyclic and constacyclic codes over the ring Z4[u]/〈u2−1〉 and determined the form
of the generators of cyclic codes and spanning sets. They also proved that the Z4-image of
a (2 + u)-constacyclic code of odd length is a cyclic code over Z4 and provided examples
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with better parameters than previously known Z4-linear codes. In [20], Shi et al. studied
(1 + 2u)-constacyclic codes over the ring Z4[u]/〈u2− 1〉 and showed that the Gray images
of (1+2u)-constacyclic codes of length n over the ring are cyclic codes of length 2n over Z4.

In [9], Islam and Prakash considered the ring Z4 + uZ4 + vZ4, where u2 = v2 = uv =
vu = 0 of order 64 and determined the generator polynomials and minimal spanning set for
cyclic codes over the ring. Further, the authors proved that the Gray images of (1 + 2u)-
constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to a quasi-cyclic
code over Z4. Later on, Dertli and Cengellenmis [5] introduced the ring Z4 + uZ4 + vZ4,
u2 = u, v2 = v, uv = vu = 0 and studied the Gray images of cyclic, constacyclic, quasi-
cyclic and their skew codes over the ring. Moreover, they determined cyclic DNA and
skew cyclic DNA codes over the ring. In [16], Özen et al. studied cyclic and constacyclic
codes over the ring Z4[u]/〈u3 − u2〉 and their Gray images. They developed the structure
of generator polynomial of cyclic and constacyclic codes with odd length over this ring
and constructed several new and optimal codes in terms of the Lee, Euclidean and Ham-
ming weight in reference to the database. More recently, Islam and Prakash [11] discussed
(1 + 2u+ 2v+ 2uv)-constacyclic and skew (1 + 2u+ 2v+ 2uv)-constacyclic codes over the
non-chain ring Z4+uZ4+vZ4+uvZ4, where u2 = u, v2 = v, uv = vu and obtained that the
Gray images of (1 + 2u+ 2v+ 2uv)-constacyclic and skew (1 + 2u+ 2v+ 2uv)-constacyclic
codes over the ring are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes
over Z4. Moreover, they proved that (1 + 2u+ 2v+ 2uv)-constacyclic codes of odd length
n are principally generated and computed several new linear codes over Z4.

In this paper, we consider the finite commutative ring R = Z4[v]/〈v3 − 1〉 and introduce
three distinct Gray maps and study their images of cyclic and (1 + 2v)-constacyclic codes
over Z4. This article intends to establish relations among the known linear codes such as
cyclic codes, skew-cyclic codes, quasi-cyclic codes, constacyclic codes, skew-constacyclic
codes or permutation equivalent to quasi-cyclic codes over Z4 via the newly introduced
Gray maps obtained as Z4-images of cyclic and (1 + 2v)-constacyclic codes over the ring
R. The paper is organized as follows. In Section 2, we study the characteristic properties
of the ring R and introduce three distinct maps called Gray maps on Rn. In Section 3, we
investigate the properties of cyclic codes with the help of newly introduced Gray maps. (1+
2v)-constacyclic codes over R and their Gray images are discussed in Section 4. Moreover,
(1 + 2v)-constacyclic codes of odd length n over the ring R with Nechaev’s permutation
and other permutation are considered. In Section 5, we study skew-constacyclic codes and
their Z4-images, and Section 6 concludes the paper.

2. Preliminaries

Let R denotes the commutative ring Z4[v]/〈v3 − 1〉 which has characteristic 4 and 64
elements. This ring can be considered as Z4 + vZ4 + v2Z4 with v3 = 1. Any element r
of R can be written as r = x + vy + v2z, where x, y, z ∈ Z4. There are 24 units in R -
1, 3, v, 3v, v2, 3v2, 1 + 2v, 1 + 2v2, 2 + v, 2 + 3v, 2 + v2, 2 + 3v2, 3 + 2v, 3 + 2v2, v+ 2v2, 2v+
v2, 2v+3v2, 3v+2v2, 1+2v+2v2, 2+v+2v2, 2+2v+v2, 2+2v+3v2, 2+3v+2v2, 3+2v+2v2.
The set of units V = {1, 3, 1 + 2v, 1 + 2v2, 3 + 2v, 3 + 2v2, 1 + 2v + 2v2, 3 + 2v + 2v2} in
R satisfies λ2 = 1 for all λ ∈ V . The unit (1 + 2v) of the ring R is used in the study of
this manuscript. The ring R has nine ideals along with the chain conditions which can be
described as follows
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〈0〉 ⊂ 〈2 + 2v + 2v2〉 ⊂ 〈1 + v + v2〉 ⊂ 〈1 + v + 3v2〉 ⊂ R,

〈0〉 ⊂ 〈2 + 2v〉 ⊂ 〈2〉 ⊂ 〈1 + v〉 ⊂ R,

〈0〉 ⊂ 〈2 + 2v + 2v2〉 ⊂ 〈2〉 ⊂ 〈1 + v〉 ⊂ R, and

〈0〉 ⊂ 〈2 + 2v〉 ⊂ 〈1 + 3v〉 ⊂ 〈1 + v〉 ⊂ R.

Clearly, R is a finite non-chain ring. Also, R is a principal ideal ring with two maximal
ideals 〈1 + v〉 and 〈1 + v + 3v2〉.

A linear code C of length n over R is an R-submodule of Rn and elements of the code
are called codewords. A linear code C of length n over R is said to be a cyclic code if it
is invariant under the cyclic shift operator σ, i.e., σ(C) = C, where σ(c0, c1, ..., cn−1) =
(cn−1, c0, c1, ..., cn−2) for all (c0, c1, ..., cn−1) ∈ C. Let λ be a unit in R. A linear code C of
length n over R is said to be a λ-constacyclic code if it is invariant under the constacyclic
shift operator τλ, i.e., τλ(C) = C, where τλ(c0, c1, ..., cn−1) = (λcn−1, c0, c1, ..., cn−2) for all
(c0, c1, ..., cn−1) ∈ C. Moreover, a λ-constacyclic code of length n over R can be identified
as an ideal of the quotient ring R[α]/〈αn − λ〉 by the correspondence

c = (c0, c1, ..., cn−1)→ c(α) = c0 + c1α+ · · ·+ cn−1α
n−1(mod〈αn − λ〉).

Definition 2.1. ( Islam and Prakash [9]). Let σ be the cyclic shift operator and n = mk.
Then, the quasi-cyclic shift operator ρk : Zn4 → Zn4 is defined by

ρk(c
1|c2|...|ck) = (σ(c1)|σ(c2)|...|σ(ck)|),

where ci ∈ Zm4 for i = 1, 2, ..., k. A linear code C of length n over Z4 is said to be a
quasi-cyclic code of index k if and only if ρk(C) = C.

We introduce three distinct Gray maps on the ring R as follows. Firstly, we take a Gray
map φ1 from R to Z2

4 as

φ1 : R→ Z2
4

defined by

φ1(x+ vy + v2z) = (x+ 2y, x+ 2y + 2z) ∀ x, y, z ∈ Z4.

Clearly, φ1 is a Z4-linear map but not bijective. This map can be extended to Rn

component-wise as follows:

φ1 : Rn → Z2n
4

φ1(r0, r1, ..., rn−1) = (x0 + 2y0, x1 + 2y1, ..., xn−1 + 2yn−1, x0 + 2y0 + 2z0,

x1 + 2y1 + 2z1, ..., xn−1 + 2yn−1 + 2zn−1), (1)

where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4 for j = 0, 1, ..., n− 1.

The second Gray map φ2 : Rn → Z2n
4 is defined by

φ2(r0, r1, ..., rn−1) = (2x0, 2x1, ..., 2xn−1, 2y0 + 2z0, 2y1 + 2z1, ..., 2yn−1 + 2zn−1), (2)

where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4 for j = 0, 1, ..., n− 1.

Further, we consider another Gray map on Rn as

φ3 : Rn → Z3n
4
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defined by

φ3(r0, r1, ..., rn−1) = (y0, y1, ..., yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−1 + yn−1,

2z0, 2z1, ..., 2zn−1), (3)

where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4 for j = 0, 1, ..., n− 1.

We recall that the Lee weight wL(x) of any x ∈ Z4 is min{|x|, |4 − x|}. Thus, the
Lee weights of 0,1,2,3 are, respectively, 0,1,2,1. The Lee weight of a vector x′ ∈ Zn4 is
defined as the rational sum of the Lee weight of its coordinates. The Lee weight for

r = (r0, r1, ..., rn−1) ∈ Rn is given by wL(r) =
n−1∑
j=0

wL(rj), where wL(r) = wL(φ1(r)) is

the Lee weight for any r ∈ R and the Lee distance for the code C is defined by d(C) =
min{dL(r, r′) | r 6= r′, r, r′ ∈ C}, where dL(r, r′) = wL(r − r′). Now, dL(r, r′) = wL(r −
r′) = wL(φ1(r − r′)) = wL(φ1(r) − φ1(r′)) = dL(φ1(r), φ1(r

′)), ∀ r, r′ ∈ Rn. Hence, φ1 is
a distance preserving map from Rn(Lee distance) to Z2n

4 (Lee distance). Similarly, φ2 and
φ3 are also distance preserving maps from Rn to Z2n

4 and Z3n
4 , respectively.

3. Cyclic codes over R

In the present section, we discuss the algebraic properties of cyclic codes over the ring
R and their Z4-Gray images. It is obtained that the first and second Gray images of cyclic
codes of length n over R are quasi-cyclic codes of length 2n over Z4 and the third Gray
image is a quasi-cyclic code of length 3n over Z4.

Proposition 3.1. For any r ∈ Rn, we have φ1(σ(r)) = ρ2(φ1(r)), where φ1 is the Gray
map defined in equation (1), σ is the cyclic shift operator and ρ2 is the quasi-cyclic shift
operator on Rn given in the preliminaries.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n− 1. Therefore, we have

φ1(σ(r)) =φ1(rn−1, r0, r1, ..., rn−2)

= (xn−1 + 2yn−1, x0 + 2y0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1 + 2zn−1,

x0 + 2y0 + 2z0, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2).

And,

ρ2(φ1(r)) = ρ2(x0 + 2y0, x1 + 2y1, ..., xn−1 + 2yn−1, x0 + 2y0 + 2z0, x1 + 2y1 + 2z1, ...,

xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1 + 2zn−1)

= (xn−1 + 2yn−1, x0 + 2y0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1 + 2zn−1,

x0 + 2y0 + 2z0, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2).

Hence, φ1(σ(r)) = ρ2(φ1(r)). �

Theorem 3.1. The Gray image φ1(C) of a cyclic code C of length n over R is a quasi-
cyclic code of length 2n with index 2 over Z4.

Proof. Since C is a cyclic code of length n over R, σ(C) = C. Applying φ1 on both sides
and using Proposition 3.1, we have ρ2(φ1(C)) = φ1(C). This implies that φ1(C) is a
quasi-cyclic code of length 2n with index 2 over Z4. �
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Proposition 3.2. For any r ∈ Rn, we have φ2(σ(r)) = ρ2(φ2(r)), where φ2 is the Gray
map defined in equation (2), σ is the cyclic shift operator and ρ2 is the quasi-cyclic shift
operator on Rn given in the preliminaries.

Proof. Similar to the proof of Proposition 3.1. �

Theorem 3.2. The Gray image φ2(C) of a cyclic code C of length n over R is a quasi-
cyclic code of length 2n with index 2 over Z4.

Proof. Similar to the proof of Theorem 3.1. �

Proposition 3.3. For any r ∈ Rn, we have φ3(σ(r)) = ρ3(φ3(r)), where φ3 is the Gray
map defined in equation (3), σ is the cyclic shift operator and ρ3 is the quasi-cyclic shift
operator on Rn given in the preliminaries.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n− 1. Therefore, we have

φ3(σ(r)) =φ3(rn−1, r0, r1, ..., rn−2)

= (yn−1, y0, y1, ..., yn−2, 2xn−1 + yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−2 + yn−2,

2zn−1, 2z0, 2z1, ..., 2zn−2).

And,

ρ3(φ3(r)) = ρ3(y0, y1, ..., yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−1 + yn−1, 2z0, 2z1, ..., 2zn−1)

= (yn−1, y0, y1, ..., yn−2, 2xn−1 + yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−2 + yn−2,

2zn−1, 2z0, 2z1, ..., 2zn−2).

Hence, φ3(σ(r)) = ρ3(φ3(r)). �

Theorem 3.3. The Gray image φ3(C) of a cyclic code C of length n over R is a quasi-
cyclic code of length 3n with index 3 over Z4.

Proof. Since C is a cyclic code of length n over R, σ(C) = C. On applying φ3 and using
Proposition 3.3, we get ρ3(φ3(C)) = φ3(C). This shows that φ3(C) is a quasi-cyclic code
of length 3n with index 3 over Z4. �

Considering Φ1 as the permutation version of the above Gray map φ1, we define Φ1 as
follows

Φ1(r0, r1, ..., rn−1) = (φ1(r0), φ1(r1), ..., φ1(rn−2), φ1(rn−1))

= (x0 + 2y0, x0 + 2y0 + 2z0, x1 + 2y1, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2,

xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1, xn−1 + 2yn−1 + 2zn−1), (4)

where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4 for j = 0, 1, ..., n− 1.

Proposition 3.4. For any r ∈ Rn, we have Φ1(σ(r)) = σ2(Φ1(r)), where Φ1 is the map
defined in equation (4) and σ is the cyclic shift operator as given in the preliminaries.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n− 1. Then

Φ1(σ(r)) = Φ1(rn−1, r0, ..., rn−2)

= (xn−1 + 2yn−1, xn−1 + 2yn−1 + 2zn−1, x0 + 2y0, x0 + 2y0 + 2z0, x1 + 2y1,

x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2, xn−2 + 2yn−2 + 2zn−2).
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And,

σ2(Φ1(r)) =σ2(x0 + 2y0, x0 + 2y0 + 2z0, x1 + 2y1, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2,

xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1, xn−1 + 2yn−1 + 2zn−1)

= (xn−1 + 2yn−1, xn−1 + 2yn−1 + 2zn−1, x0 + 2y0, x0 + 2y0 + 2z0, x1 + 2y1,

x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2, xn−2 + 2yn−2 + 2zn−2).

Hence, Φ1(σ(r)) = σ2(Φ1(r)). �

Theorem 3.4. Let C be a cyclic code of length n over R. Then Φ1(C) is equivalent to a
2-quasicyclic code of length 2n over Z4.

Proof. Since C is a cyclic code of length n over R, σ(C) = C. Applying Φ1 on both
sides and using Proposition 3.4, we have σ2(Φ1(C)) = Φ1(C). This shows that Φ1(C) is
equivalent to a 2-quasicyclic code of length 2n over Z4. �

Remark 3.1. Taking Φ2 and Φ3 as the permutation versions of the other Gray maps φ2
and φ3, respectively, we can obtain analogous results of Proposition 3.4 and Theorem 3.4.

4. Constacyclic codes over R

In this section, we investigate the relationships between the Gray images of (1 + 2v)-
constacyclic codes over R and some well-known linear codes over Z4. It is obtained that the
Gray images of (1+2v)-constacyclic codes over R are cyclic, quasi-cyclic and permutation
equivalent to a quasi-cyclic codes over Z4. Moreover, we discuss (1+2v)-constacyclic codes
of odd length n over R with Nechaev’s permutation and other permutation.

Proposition 4.1. For any r ∈ Rn, we have φ1(τ(1+2v)(r)) = σ(φ1(r)), where φ1 is the
Gray map given in equation (1), τ(1+2v) is the (1 + 2v)-constacyclic shift operator and σ
is the cyclic shift operator on Rn given in the preliminaries.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj+vyj+v2zj ∈ R and xj , yj , zj ∈ Z4 for
j = 0, 1, ..., n− 1. Clearly, (1 + 2v)(xn−1 + vyn−1 + v2zn−1) = (xn−1 + 2zn−1) + v(2xn−1 +
yn−1) + v2(2yn−1 + zn−1) and φ1

(
(1 + 2v)(xn−1 + vyn−1 + v2zn−1)

)
= (xn−1 + 2yn−1 +

2zn−1, xn−1 + 2yn−1). Therefore, we have

φ1(τ(1+2v)(r)) =φ1((1 + 2v)rn−1, r0, ..., rn−2)

= (xn−1 + 2yn−1 + 2zn−1, x0 + 2y0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1,

x0 + 2y0 + 2z0, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2).

On the other hand,

σ(φ1(r)) =σ(x0 + 2y0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1, x0 + 2y0 + 2z0,

x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1 + 2zn−1)

= (xn−1 + 2yn−1 + 2zn−1, x0 + 2y0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1,

x0 + 2y0 + 2z0, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2).

Hence, φ1(τ(1+2v)(r)) = σ(φ1(r)). �

Theorem 4.1. The Gray image φ1(C) of a (1 + 2v)-constacyclic code C of length n over
R is a cyclic code of length 2n over Z4.

Proof. Since C is a (1+2v)-constacyclic code of length n over R, τ(1+2v)(C) = C. Applying
φ1 on both sides and using Proposition 4.1, we have σ(φ1(C)) = φ1(C). This implies that
φ1(C) is a cyclic code of length 2n over Z4. �
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Proposition 4.2. For any r ∈ Rn, we have φ2(τ(1+2v)(r)) = ρ2(φ2(r)), where φ2 is the
Gray map defined in equation (2), τ(1+2v) is the (1 + 2v)-constacyclic shift operator and
ρ2 is the quasi-cyclic shift operator on Rn given in the preliminaries.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj+vyj+v2zj ∈ R and xj , yj , zj ∈ Z4 for
j = 0, 1, ..., n− 1. Clearly, (1 + 2v)(xn−1 + vyn−1 + v2zn−1) = (xn−1 + 2zn−1) + v(2xn−1 +
yn−1) + v2(2yn−1 + zn−1) and φ2

(
(1 + 2v)(xn−1 + vyn−1 + v2zn−1)

)
= (2xn−1, 2yn−1 +

2zn−1). Therefore, we have

φ2(τ(1+2v)(r)) =φ2((1 + 2v)rn−1, r0, r1, ..., rn−2)

= (2xn−1, 2x0, 2x1, ..., 2xn−2, 2yn−1 + 2zn−1, 2y0 + 2z0, 2y1 + 2z1, ...,

2yn−2 + 2zn−2).

On the other hand,

ρ2(φ2(r)) = ρ2(2x0, 2x1, ..., 2xn−1, 2y0 + 2z0, 2y1 + 2z1, ..., 2yn−1 + 2zn−1)

= (2xn−1, 2x0, 2x1, ..., 2xn−2, 2yn−1 + 2zn−1, 2y0 + 2z0, 2y1 + 2z1, ...,

2yn−2 + 2zn−2).

Hence, φ2(τ(1+2v)(r)) = ρ2(φ2(r)). �

Theorem 4.2. The Gray image φ2(C) of a (1 + 2v)-constacyclic code C of length n over
R is a quasi-cyclic code of length 2n and index 2 over Z4.

Proof. Since C is a (1+2v)-constacyclic code of length n over R, τ(1+2v)(C) = C. Applying
φ2 on both sides and using Proposition 4.2, we have ρ2(φ2(C)) = φ2(C). This shows that
φ2(C) is a quasi-cyclic code of length 2n and index 2 over Z4. �

Proposition 4.3. For any r ∈ Rn, we have φ3(τ(1+2v)(r)) = ω(ρ3(φ3(r))), where φ3 is the
Gray map defined in equation (3), τ(1+2v) is the (1+2v)-constacyclic shift operator and ρ3 is
the quasi-cyclic shift operator on Rn given in the preliminaries and ω is the permutation
of Z3n

4 defined by ω(a1, a2, ..., a3n) = (aµ(1), aµ(2), ..., aµ(3n)) with the permutation µ =
(1, n+ 1) of {1, 2, 3, ..., 3n}.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n− 1. Then

φ3(τ(1+2v)(r) =φ3((1 + 2v)rn−1, r0, r1, ..., rn−2)

= (2xn−1 + yn−1, y0, y1, ..., yn−2, yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−2 + yn−2,

2zn−1, 2z0, 2z1, ..., 2zn−2).

And, we have

ρ3(φ3(r)) = ρ3(y0, y1, ..., yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−1 + yn−1, 2z0, 2z1, ..., 2zn−1)

= (yn−1, y0, y1, ..., yn−2, 2xn−1 + yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−2 + yn−2,

2zn−1, 2z0, 2z1, ..., 2zn−2).

On applying the permutation ω, we get

ω(ρ3(φ3(r))) = (2xn−1 + yn−1, y0, y1, ..., yn−2, yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−2 + yn−2,

2zn−1, 2z0, 2z1, ..., 2zn−2).

Hence, φ3(τ(1+2v)(r)) = ω(ρ3(φ3(r))).
�
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Theorem 4.3. The Gray image φ3(C) of a (1 + 2v)-constacyclic code C of length n over
R is permutation equivalent to a quasi-cyclic code of length 3n and index 3 over Z4.

Proof. Since C is a (1+2v)-constacyclic code of length n over R, τ(1+2v)(C) = C. Applying
φ3 on both sides and by Proposition 4.3, we have ω(ρ3(φ3(C))) = φ3(C). This implies
that φ3(C) is permutation equivalent to a quasi-cyclic code of length 3n and index 3 over
Z4. �

Let C be a (1 + 2v)-constacyclic codes of odd length n over R. Obviously, (1 + 2v)n = 1
if n is an even integer and (1 + 2v)n = (1 + 2v) if n is an odd integer. Based on the results
established in [2, 3, 9, 10, 15, 20], analogous results are given below without proofs.

Theorem 4.4. A mapping β : R[α]/〈αn−1〉 −→ R[α]/〈αn−λ〉 defined by β(a(α)) = a(λα)
is a ring isomorphism, if n is an odd integer.

Corollary 4.1. For any odd integer n, I is an ideal of R[α]/〈αn − 1〉 if and only if β(I)
is an ideal of R[α]/〈αn − λ〉.

Corollary 4.2. Let C be a subset of Rn and β be a permutation of Rn, defined by
β(c0, c1, ..., cn−1) = (c0, λc1, ..., λ

n−1cn−1). Then C is a cyclic code of odd length n over R
if and only if β(C) is a λ-constacyclic code over R.

Definition 4.1 (Qian et al. [18]). Let n be an odd integer and ζ = (1, n + 1)(3, n +
3)...(2i+1, n+2i+1)...(n−2, 2n−2) be a permutation of the set {0, 1, 2, ..., 2n−1}. Then
the Nechaev’s permutation π is permutation of Z2n

4 defined by

π(r0, r1, ..., r2n−1) = (rζ(0), rζ(1), ..., rζ(2n−1)).

Theorem 4.5. For any r ∈ Rn, we have φ1(β(r)) = π(φ1(r)), where φ1 is the Gray
map defined in equation (1), β is the permutation of Rn with λ = (1 + 2v) and π is the
Nechaev’s permutation as given before.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj+vyj+v2zj ∈ R and xj , yj , zj ∈ Z4 for
j = 0, 1, ..., n−1. Clearly, (1+2v)(xj +uyj +u2zj) = (xj +2zj)+v(2xj +yj)+v2(2yj +zj)
and φ1

(
(1 + 2v)(xj + vyj + v2zj)

)
= (xj + 2yj + 2zj , xj + 2yj). Therefore, we have

φ1(β(r)) =φ1(r0, (1 + 2v)r1, ..., (1 + 2v)n−2rn−2, (1 + 2v)n−1rn−1)

= (x0 + 2y0, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1,

x0 + 2y0 + 2z0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1 + 2zn−1).

And,

π(φ1(r)) =π(x0 + 2y0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1, x0 + 2y0 + 2z0,

x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1 + 2zn−1)

= (x0 + 2y0, x1 + 2y1 + 2z1, ..., xn−2 + 2yn−2 + 2zn−2, xn−1 + 2yn−1,

x0 + 2y0 + 2z0, x1 + 2y1, ..., xn−2 + 2yn−2, xn−1 + 2yn−1 + 2zn−1).

Hence, φ1(β(r)) = π(φ1(r)). �

Corollary 4.3. If C̃ is the Gray image of a cyclic code C of odd length n over R

(i.e., φ1(C) = C̃), then π(C̃) is a cyclic code of length 2n over Z4.

Proof. By Corollary 4.2, β(C) is a (1 + 2v)-constacyclic code over R as C is a cyclic code.
From Theorem 4.1, we see that φ1(β(C)) is a cyclic code of length 2n over Z4. Thus, by

Theorem 4.5, π(C̃) is a cyclic code of length 2n over Z4. �
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Theorem 4.6. For any r ∈ Rn, we have φ3(β(r)) = γ(φ3(r)), where φ3 is the Gray map
given in equation (3), β is the permutation of Rn given in Corollary 4.3 with λ = (1 + 2v)
and γ is the permutation of Z3n

4 defined by γ(c1, c2, ..., c3n) = (cν(1), cν(2), ..., cν(3n)) with
the permutation ν = (2, n+ 2)(4, n+ 4)...(n− 1, 2n− 1) of {1, 2, 3, ..., 3n}.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n− 1. Therefore, we have

φ3(β(r)) =φ3(r0, (1 + 2v)r1, ..., (1 + 2v)rn−2, rn−1)

= (y0, 2x1 + y1, y2, ..., 2xn−2 + yn−2, yn−1, 2x0 + y0, y1, ..., yn−2, 2xn−1 + yn−1,

2z0, 2z1, ..., 2zn−2, 2zn−1).

And,

γ(φ3(r)) = γ(y0, y1, ..., yn−2, yn−1, 2x0 + y0, 2x1 + y1, ..., 2xn−2 + yn−2, 2xn−1 + yn−1,

2z0, 2z1, 2z2, ..., 2zn−2, 2zn−1)

= (y0, 2x1 + y1, ..., 2xn−2 + yn−2, yn−1, 2x0 + y0, y1, 2x2 + y2, ..., yn−2,

2xn−1 + yn−1, 2z0, 2z1, ..., 2zn−2, 2zn−1).

Hence, φ3(β(r)) = γ(φ3(r)). �

Corollary 4.4. If C̃ is the Gray image of a cyclic code C of odd length n over R

(i.e., φ3(C) = C̃), then γ(C̃) is permutation equivalent to a quasi-cyclic code of index
3 and length 3n over Z4.

Proof. By Corollary 4.2, β(C) is a (1 + 2v)-constacyclic code over R. Using Theorem 4.3

and Theorem 4.6, it is obtained that γ(C̃) is permutation equivalent to a quasi-cyclic code
of index 3 and length 3n over Z4. �

5. Skew-constacyclic codes and their Z4-images

Let θ be an automorphism on the ring R defined by θ(x + vy + v2z) = x + vz + v2y
∀ x, y, z ∈ Z4, where θ(x) = x ∀ x ∈ Z4, θ(v) = v2 and θ(v2) = v. Obviously, the
order of the automorphism is 2 as θ2(a) = a ∀ a ∈ R. The set R[α; θ] = {a0 + a1α +
· · · + an−1α

n−1 | aj ∈ R, j = 0, 1, ..., n − 1} is a non-commutative skew polynomial
ring under the usual addition of polynomials and multiplication of polynomials, which is
defined as (aαs)(bαt) = aθs(b)αs+t. By taking, λ = (1 + 2v) we can identify each vector
r = (r0, r1, r2, ..., rn−1) ∈ Rn with a polynomial r(α) ∈ R[α; θ]/〈αn − λ〉 by the following
correspondence

r = (r0, r1, ..., rn−1)→ r(α) = r0 + r1α+ · · ·+ rn−1α
n−1(mod〈αn − λ〉).

Definition 5.1. A non-empty subset C of Rn is called a skew-cyclic code of length n over
R if C is an R-submodule of Rn, and σθ(c0, c1, ..., cn−1) = (θ(cn−1), θ(c0), ..., θ(cn−2)) ∈ C
for any (c0, c1, ..., cn−1) ∈ C.

Definition 5.2 (Islam and Prakash [10]). A non-empty subset C of Rn is called a skew
λ-constacyclic code of length n over R if it satisfies the following conditions:

(i). C is an R-submodule of Rn, and
(ii). if (c0, c1, ..., cn−1) ∈ C, then τθ,λ(c0, c1, ..., cn−1) = (θ(λcn−1), θ(c0), ..., θ(cn−2)) ∈

C.

If λ = 1, then τθ,λ is called a skew-cyclic shift operator.
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Definition 5.3. A non-empty subset C of Rn is called a skew 2-quasicyclic code of length n
over R if C is an R-submodule of Rn, and σ2θ(c0, c1, ..., cn−1) = (θ2(cn−2), θ

2(cn−1), θ
2(c0),

..., θ2(cn−3)) ∈ C for any (c0, c1, ..., cn−1) ∈ C.

Theorem 5.1 (Islam and Prakash [10]). Let C be a linear code of length n over R. Then
C is a skew λ-constacyclic code over R if and only if C is a left R[α; θ]-submodule of
R[α; θ]/〈αn − λ〉.

Proposition 5.1. For any r ∈ Rn, we have φ2(τθ,λ(r)) = ρ2(φ2(r)), where φ2 is the
Gray map defined in equation (2), ρ2 is the quasi-cyclic shift operator as given in the
preliminaries and τθ,λ is the skew λ-constacyclic shift operator with λ = (1 + 2v).

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n − 1. Now, θ(xj + vyj + v2zj) = xj + vzj + v2yj and θ((1 + 2v)(xn−1 +
vyn−1 + v2zn−1)) = (xn−1 + 2zn−1) + v(2yn−1 + zn−1) + v2(2xn−1 + yn−1). Therefore, we
have

φ2(τθ,λ(r)) =φ2(θ(λrn−1), θ(r0), θ(r1), ..., θ(rn−2))

=φ2((xn−1 + 2zn−1) + v(2yn−1 + zn−1) + v2(2xn−1 + yn−1), x0 + vz0 + v2y0,

x1 + vz1 + v2y1, ..., xn−2 + vzn−2 + v2yn−2)

=(2xn−1, 2x0, 2x1, ..., 2xn−2, 2yn−1 + 2zn−1, 2y0 + 2z0, 2y1 + 2z1, ...,

2yn−2 + 2zn−2).

From Proposition 4.2, we have

ρ2(φ2(r)) = (2xn−1, 2x0, 2x1, ..., 2xn−2, 2yn−1 + 2zn−1, 2y0 + 2z0, 2y1 + 2z1, ...,

2yn−2 + 2zn−2).

Hence, φ2(τθ,λ(r)) = ρ2(φ2(r)). �

Theorem 5.2. The Gray image φ2(C) of a skew (1 + 2v)-constacyclic code C of length n
over R is a quasi-cyclic code of length 2n and index 2 over Z4.

Proof. Since C is a skew (1 + 2v)-constacyclic code of length n over R, τθ,λ(C) = C.
Applying φ2 on both sides and using Proposition 5.1, we have ρ2(φ2(C)) = φ2(C). This
shows that φ2(C) is a quasi-cyclic code of length 2n and index 2 over Z4. �

Using the permutation version Φ2 of the Gray map given in Section 3, we have obtained
the following results.

Proposition 5.2. For any r ∈ Rn, we have Φ2(σθ(r)) = σ2θ(Φ2(r)), where Φ2 is the
permutation version of Gray map φ2 and σθ is the skew-cyclic shift operator as given
before.

Proof. Let r = (r0, r1, ..., rn−1) ∈ Rn, where rj = xj + vyj + v2zj ∈ R and xj , yj , zj ∈ Z4

for j = 0, 1, ..., n− 1. Then,

Φ2(σθ(r)) = Φ2(θ(rn−1), θ(r0), θ(r1), ..., θ(rn−2))

= (2xn−1, 2yn−1 + 2zn−1, 2x0, 2y0 + 2z0, 2x1, 2y1 + 2z1, ..., 2xn−2, 2yn−2 + 2zn−2).

On the other hand,

σ2θ(Φ2(r)) =σ2θ(2x0, 2y0 + 2z0, 2x1, 2y1 + 2z1, ..., 2xn−2, 2yn−2 + 2zn−2, 2xn−1,

2yn−1 + 2zn−1)

= (2xn−1, 2yn−1 + 2zn−1, 2x0, 2y0 + 2z0, 2x1, 2y1 + 2z1, ..., 2xn−2, 2yn−2 + 2zn−2).



ST TIMOTHY KOM, O. RATNABALA DEVI: IDENTIFYING CYCLIC AND (1 + 2V )- ... 961

Hence, Φ2(σθ(r)) = σ2θ(Φ2(r)). �

Theorem 5.3. Let C be a skew-cyclic code of length n over R. Then the image Φ2(C) is
permutation equivalent to a skew 2-quasicyclic code of length 2n over Z4.

Proof. Since C is a skew-cyclic code of length n over R, σθ(C) = C. Applying Φ2 and
using Proposition 5.2, we have Φ2(σθ(C)) = σ2θ(Φ2(C)) = Φ2(C). This implies that Φ2(C)
is permutation equivalent to a skew 2-quasicyclic code of length 2n over Z4. �

6. Conclusion

In this paper, we discussed algebraic structures of cyclic and (1+2v)-constacyclic codes
over the ring Z4[v]/〈v3 − 1〉. We have shown that the Gray images of cyclic codes are
quasi-cyclic codes over Z4 and that of (1 + 2v)-constacyclic codes are cyclic, quasi-cyclic
and permutation equivalent to quasi-cyclic codes over Z4. It is also proved that Gray image
of a skew (1+2v)-constacyclic code is permutation equivalent to a skew 2-quasicyclic code
over Z4.

7. Acknowledgements

The first author is grateful to the Council of Scientific and Industrial Research, Govern-
ment of India for financial support through fellowship with Award no. 09/476(0089)/2019-
EMR-I, and the Department of Mathematics, Manipur University, for providing research
facilities. The authors also sincerely thank the anonymous referees for their careful reading
and valuable comments to improve this paper.

References

[1] Abualrub, T. and Siap, I., (2007), Cyclic codes over the ring Z2 +uZ2 and Z2 +uZ2 +u2Z2, Des. Codes
Cryptogr., 42(3), pp. 273-287.

[2] Aydin, N., Cengellenmis, Y. and Dertli, A., (2017), On some constacyclic codes over Z4[u]/〈u2 − 1〉,
their Z4 images and new codes, Des. Codes Cryptogr., https://doi.org/ 10.1007/s10623-017-0392-y.

[3] Bayram, A. and Siap, I., (2013), Structure of codes over the ring Z3[v]/〈v3 − v〉, Appl. Algebra Engrg.
Comm. Comput., 24, pp. 369-386.

[4] Cengellenmis, Y., Dertli, A. and Aydin, N., (2018), Some constacyclic codes over Z4[u]/〈u2〉, new Gray
maps and new quaternary codes, Algebra Colloq., 25(3), pp. 369-376.

[5] Dertli, A. and Cengellenmis, Y., (2019), On the codes over the ring Z4 +uZ4 +vZ4 cyclic, constacyclic,
quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes, Prespacetime Journal,
10(2), pp. 196-213.

[6] Gao, J., (2015), Some results on linear codes over Fp + uFp + u2Fp, J. Appl. Math. Comput., 47, pp.
473-485.

[7] Hammons, A. R., Kumar, P. V., Calderbank, A. R., Sloane, N. J. A. and Solé, P., (1994), The Z4-
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[16] Özen, M., Uzekmek, F. Z. and Öztas, E. S., (2021), Cyclic and some constacyclic codes over the ring
Z4[u]/〈u3 − u2〉 and their Gray images, Turk J. Math., 45, pp. 579-596.
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