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ON CONNECTIVE ECCENTRIC MATRIX OF A GRAPH

M. A. SAHIR1, S. M. ABU NAYEEM2∗, §

Abstract. In the present paper, the connective eccentric matrix CE(G ) for a simple
connected graph G is introduced and bounds of spectral radius of CE(G ) are obtained.
The notion of connective eccentric energy ϑ(G ) is also introduced and some upper and
lower bounds of ϑ(G ) are obtained here.
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1. Introduction

Let G = G (V ,E ) be a non-null connected graph with no self-loops and parallel edges.
Suppose V = V (G ) = {v1, v2, . . . , vn} is the set of vertices and E = E (G ) = {eij |vi and vj
are adjacent in G} is the set of edges. The number of edges incident to vi is called the
degree of vi, and is denoted by di. Let δ and ∆ be the lowest and highest degree among
the degrees of vertices of G respectively. Let d(vi, vj) be the shortest distance between
the vertices vi and vj . The maximum distance from vi to any other vertex of G is called
the eccentricity of vi, and is denoted by ε(vi). A connected graph G is called l-eccentric
graph if all the vertices of G have the same eccentricity l. The minimum and maximum
eccentricity among all the vertices of G are called radius and diameter of G respectively, and
are denoted by r = r(G ) and D = D(G ) respectively. The adjacency matrix A(G ) = (αij)
is a 0-1 matrix of order n with αij = 1 if vi is adjacent to vj and 0 otherwise.

A topological index or connectivity index of a graph is an invariant of the form τ(G ) =∑
vi∼vj

Γ(vi, vj) where Γ : V ×V → R is a symmetric function, i.e., Γ(vi, vj) = Γ(vj , vi). The

study of topological indices are mainly related to the subjects of chemical graph theory,
mathematical chemistry and molecular topology. Some of the popular topological indices
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are the first Zagreb index [6] where Γ(vi, vj) = di + dj , second Zagreb index [6] where
Γ(vi, vj) = didj , Randić connectivity index [9] where Γ(vi, vj) = 1√

didj
, harmonic index [2]

where Γ(vi, vj) = 1
di+dj

etc.

The connective eccentric index was introduced by Gupta et al. [4] in 2000. It is

denoted by Cξ(G ) and is defined by Cξ(G ) =
∑
vi∼vj

(
1

ε(vi)
+ 1

ε(vj)

)
, i.e., Cξ(G ) =

∑
vi∈V

di
ε(vi)
·

In 2011, Ghorbani [3] derived some bounds of connective eccentric index and computed it
for two infinite classes of fullerenes. In 2014, De et al. [1] obtainted some other bounds
of connective eccentric index and got some exact formulae for graphs under some basic
graph operations.

In 2017, Revankar et al. [10] have introduced the concept of eccentricity sum matrix
and energy of that matrix for a graph. The eccentricity sum matrix for a graph G is
defined by, ES(G ) = (pij)n×n where

pij =

{
ε(vi) + ε(vj), if i 6= j,
0, otherwise.

Motivated by the aforesaid work of Revankar et al. [10], here we define connective
eccentric matrix of a graph G as CE(G ) = (aij)n×n where

aij =

{ 1
ε(vi)

+ 1
ε(vj)

, if i 6= j,

0, otherwise.

Since ε(vi) 6= 0 for all vi ∈ V , CE(G ) is a well defined matrix. Since it is a real symmetric
matrix, all of its eigenvalues are real. Let ζ1 ≥ ζ2 ≥ · · · ≥ ζn be the eigenvalues of CE(G ).
Note that

tr(CE(G )) =
n∑
i=1

ζi = 0. (1)

Energy of a graph [5] is one of the most studied graph parameters in recent years. It

is defined by
n∑
i=1
|λi| where λi, i = 1, 2, . . . , n are the adjacency eigenvalues of G . In an

analogy, the energy of CE(G ), denoted by ϑ(CE(G )) is defined as

ϑ(CE(G )) =
n∑
i=1

|ζi|.

It is easy to follow that –

tr
(
[CE(G )]2

)
=

n∑
i=1

ζ2i =
n∑
i=1

n∑
j=1

aijaji = 2
∑
i<j

(
1

ε(vi)
+

1

ε(vj)

)2

= 2Q (say), (2)

where Q =
∑
i<j

(
1

ε(vi)
+ 1

ε(vj)

)2
.

2. Preliminaries

Lemma 2.1 (Arithmetic mean-geometric mean inequality [11]). If x1, x2, . . . , xn are n
positive real numbers, then

x1 + x2 + · · ·+ xn
n

≥ n
√

(x1x2 . . . xn).

The equality holds when x1 = x2 = · · · = xn.
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Lemma 2.2 (Cauchy-Schwarz inequality [11]). If {x1, x2, . . . , xn} and {y1, y2, . . . , yn} are
two sets of positive reals, then(

n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2i

)(
n∑
i=1

y2i

)
.

Lemma 2.3. [8] If {x1, x2, . . . , xn} is a set of non negative reals, then

n

 1

n

n∑
i=1

xi −

(
n∏
i=1

xi

) 1
n

 ≤ n n∑
i=1

xi −

(
n∑
i=1

√
xi

)2

≤ n(n− 1)

 1

n

n∑
i=1

xi −

(
n∏
i=1

xi

) 1
n

 .
Lemma 2.4. [7] If H is a Hermitian matrix of order n and ζ1 is the largest eigenvalue of

H, then ζ1 = max
qTHq

qT q
, where q is a non-zero column vector of order n.

3. Exact values and bounds of ζi

Theorem 3.1. Let G be an l-eccentric graph. Then the eigenvalues of CE(G ) are 2(n−1)
l

with multiplicity 1 and −2
l with multiplicity n− 1.

Proof. Since G is an l-eccentric graph, CE(G ) is given by

aij =

{
2
l , if i 6= j,

0, otherwise.

The characteristic equation of CE(G ) is det(ζIn − CE(G )) = 0.
Let A(Kn) be the adjacency matrix of Kn, the complete graph of order n. Then

det(ζIn − CE(G )) = det

(
ζIn −

2A(Kn)

l

)
=

(
2

l

)n
det

(
ζl

2
In −A(Kn)

)
=

(
2

l

)n(ζl
2
− (n− 1)

)(
ζl

2
+ 1

)n−1
.

Therefore the eigenvalues of CE(G ) are 2(n−1)
l with multiplicity 1 and −2

l with multi-
plicity n− 1. �

Example 3.1. (i) Complete graph Kn of order n is 1-eccentric graph. So the eigenval-
ues of CE(Kn) are 2(n− 1) with multiplicity 1 and −2 with multiplicity n− 1.

(ii) Complete bipartite graph Ka,b of order n = a+ b, a, b > 1 is 2-eccentric graph. Thus
the eigenvalues of CE(Ka,b) are n − 1 with multiplicity 1 and −1 with multiplicity
n− 1.

(iii) If G = Cn is a cycle of even order then it is n
2 -eccentric graph. Hence its connective

eccentric eigenvalues are 4(n−1)
n with multiplicity 1 and − 4

n with multiplicity n− 1.

(iv) If G = Cn is a cycle of odd order then it is n−1
2 -eccentric graph. The eigenvalues of

CE(G ) are 4 with multiplicity 1 and − 4
n−1 with multiplicity n− 1.

Next, we consider a class of graphs which are almost l-eccentric – only one vertex has
eccentricity 1, and each of the remaining vertices has eccentricity 2. It is evident that
all such graphs are not isomorphic. As for example, for n ≥ 5, the wheel graph Wn, the
star graph K1,n−1, and the graph C ′n, obtained from the cycle graph Cn, by joining one



262 TWMS J. APP. AND ENG. MATH. V.14, N.1, 2024

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

(b)

1

2

3

4

5

7

6

(c)

Figure 1. (a) The wheel graph W7, (b) The star graph K1,6, (c) The graph C ′
7.

particular vertex to all the other vertices, as shown in Figure 1. All these three graphs
have the same connective eccentric matrix

CE(G ) =


0 3

2
3
2 · · · 3

2
3
2 0 1 · · · 1
3
2 1 0 · · · 1
...

...
...

. . .
...

3
2 1 · · · 1 0


n×n

. (3)

Theorem 3.2. Let G be a graph whose exactly one vertex has eccentricity 1, and each of
the other vertices has eccentricity 2. Then the connective eccentric eigenvalues of G are

−1 with multiplicity n− 2 and (n−2)±
√
n2+5n−5
2 ·

Proof. Observe that ζi = −1 is an eigenvalue with corresponding eigenvector qi = (0, 1, 0, . . . ,
0,−1, 0, . . . , 0)T (with −1 at i-th position), i = 3, 4, . . . , n for the connective eccentric ma-
trix CE(G ) given by (3). Clearly, the multiplicity of the eigenvalue −1 is (n− 2).

Let, the characteristic polynomial of CE(G ) be

det (ζIn − CE(G )) = (ζ + 1)(n−2)(ζ2 + rζ + s)

=
[
ζ(n−2) + (n− 2)ζ(n−3) + · · ·+ 1

]
(ζ2 + rζ + s)

= ζn + [r + (n− 2)]ζ(n−1) + · · ·+ s. (4)

As the trace of CE(G ) is 0, it follows that r = −(n − 2) and s = det(CE(G )) =(
3
2

)2
(−1)n det(A(Kn)) = −9

4(n− 1). So, the remaining two eigenvalues of CE(G ) are the

roots of ζ2 − (n− 2)ζ − 9
4(n− 1), i.e., (n−2)±

√
n2+5n−5
2 ·

�

Theorem 3.3. For any connected graph G ,

ζ1 ≤
√

2Q(n− 1)

n
,

where Q =
∑
i<j

(
1

ε(vi)
+ 1

ε(vj)

)2
and equality holds if and only if G is an l-eccentric graph.

Proof. Applying Cauchy-Schwarz inequality [11] on (n− 1)-tuples 1, 1, . . . , 1 and |ζi|, i =
2, 3, . . . , n, one gets (

n∑
i=2

|ζi|

)2

≤ (n− 1)

(
n∑
i=2

ζ2i

)
. (5)
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Again, (
n∑
i=2

ζi

)2

≤

(
n∑
i=2

|ζi|

)2

. (6)

From (5) and (6), it follows that(
n∑
i=2

ζi

)2

≤ (n− 1)

(
n∑
i=2

ζ2i

)
. (7)

Since
n∑
i=1

ζi = 0,
n∑
i=2

ζi = −ζ1 and from (2),
n∑
i=2

ζ2i = 2Q− ζ21 .

Then from (7), (−ζ1)2 ≤ (n− 1)
(
2Q− ζ21

)
, i.e., ζ1 ≤

√
2Q(n−1)

n ·
It is easy to verify that the equality occurs in the above inequality when G is an l-

eccentric graph. �

Theorem 3.4. Let G be a simple connected graph. Then

ζ1 ≥ 2Cξ(G )

n
·

The equality holds if and only if G is a complete graph.

Proof. For q = (1, 1, . . . , 1)T , it is seen from Lemma 2.4 that

ζ1 ≥ qTCE(G )q

qT q
=

2
∑
i<j

(
1

ε(vi)
+ 1

ε(vj)

)
n

=

2
n∑
i=1

(n−1)
ε(vi)

n
·

Since di ≤ (n− 1) for all i = 1, 2, . . . , n,

ζ1 ≥ 2

n

n∑
i=1

di
ε(vi)

=
2Cξ(G )

n
· (8)

A simple connected graph G with n vertices is complete if and only if the degree of each
vertex of G is n− 1. So, if G is not a complete graph, then the inequality in (8) becomes
strict.

Again, for G = Kn, ζ1 = 2(n−1) and Cξ(G ) = n(n−1). Thus equality holds for G = Kn.
Hence the proof is complete. �

The above theorem is verified with the help of the following examples.

Example 3.2. (i) For G = C6, ζ1 = 10
3 and Cξ(C6) =

n∑
i=1

di
ε(vi)

=
6∑
i=1

2
3 = 4. It is evident

that,

ζ1 =
10

3
>

2Cξ(C6)

6
=

4

3
·

(ii) For G = K6, ζ1 = 10 and Cξ(K6) =
n∑
i=1

di
ε(vi)

=
6∑
i=1

5 = 30. Also it is evident that,

ζ1 =
2Cξ(K6)

6
·
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4. Properties and bounds of ϑ(CE(G ))

Theorem 4.1. Let G be an l-eccentric graph. Then ϑ(CE(G )) = 4(n−1)
l ·

Proof. The complete list of eigenvalues of G is given by Theorem 3.1.
Therefore,

ϑ(CE(G )) =
n∑
i=1

|ζi| = 1× 2(n− 1)

l
+ (n− 1)×

∣∣∣∣−2

l

∣∣∣∣ =
4(n− 1)

l
·

�

Example 4.1. (i) ϑ(CE(Kn)) = 4(n− 1).
(ii) ϑ(CE(Ka,b)) = 2(n− 1) where n = a+ b and a, b > 1.

(iii) ϑ(CE(Cn)) = 8(n−1)
n when n is even and ϑ(CE(Cn)) = 8 when n is odd.

(iv) ϑ(G ) = (n− 2) +
√
n2 + 5n− 5, where the graph G contains exactly one vertex with

eccentricity 1, and every other vertex with eccentricity 2.

Theorem 4.2. For any connected graph G ,√
2Q ≤ ϑ(CE(G )) ≤

√
2nQ

where Q =
∑
i<j

(
1

ε(vi)
+ 1

ε(vj)

)2
.

Proof. Cauchy-Schwarz inequality [11] on n-tuples 1, 1, . . . , 1 and |ζi|, i = 1, 2, . . . , n can
be applied to get (

n∑
i=1

|ζi|

)2

≤ n

(
n∑
i=1

ζ2i

)
i.e., [ϑ(CE(G ))]2 ≤ 2nQ

or, ϑ(CE(G )) ≤
√

2nQ. (9)

Again,

[ϑ(CE(G ))]2 =

(
n∑
i=1

|ζi|

)2

≥
n∑
i=1

|ζi|2 = 2Q,

or, [ϑ(CE(G ))] ≥
√

2Q. (10)

From (9) and (10) the required result follows. �

Theorem 4.3. For any graph G ,√
2Q+ n(n− 1)(detCE(G ))2/n ≤ ϑ(CE(G )) ≤

√
2(n− 1)Q+ n(detCE(G ))2/n (11)

where Q =
∑
i<j

(
1

ε(vi)
+ 1

ε(vj)

)2
.

Proof.

[ϑ(CE(G ))]2 =

(
n∑
i=1

|ζi|

)2

=
n∑
i=1

|ζi|2 + 2
∑
i<j

|ζi||ζj | = 2Q+
∑
i 6=j
|ζi||ζj |. (12)

Applying arithmetic mean-geometric mean inequality [11] on n(n − 1) non-negative
numbers,



M. A. SAHIR, S. M. A. NAYEEM: ON CONNECTIVE ECCENTRIC MATRIX OF A GRAPH 265

1

n(n− 1)

∑
i 6=j
|ζi||ζj | ≥

∏
i 6=j
|ζi||ζj |

1/n(n−1)

=

(
n∏
i=1

|ζi|2(n−1)
)1/n(n−1)

=
n∏
i=1

|ζi|
2
n = (detCE(G ))2/n

or,
∑
i 6=j
|ζi||ζj | ≥ n(n− 1)(detCE(G ))2/n. (13)

From (12) and (13),√
2Q+ n(n− 1)(detCE(G ))2/n ≤ ϑ(CE(G )). (14)

Now, application of Lemma 2.3 on |ζi|2, i = 1, 2, . . . , n gives

n

 1

n

n∑
i=1

|ζi|2 −

(
n∏
i=1

|ζi|2
) 1

n

 ≤ n n∑
i=1

|ζi|2 −

(
n∑
i=1

|ζi|

)2

≤ n(n− 1)

 1

n

n∑
i=1

|ζi|2 −

(
n∏
i=1

|ζi|2
) 1

n

 .
So,

2Q− n(detCE(G ))2/n ≤ 2nQ− ϑ(CE(G ))2

or, ϑ(CE(G ))2 ≤ 2(n− 1)Q+ n(detCE(G ))2/n

or, ϑ(CE(G )) ≤
√

2(n− 1)Q+ n(detCE(G ))2/n. (15)

From (14) and (15) the theorem follows. �

Theorem 4.4. Let G be a graph with radius r and diameter D. Then√
8n(n− 1)

D2
+ n(n− 1)(detCE(G ))2/n ≤ ϑ(CE(G ))

≤
√

8n(n− 1)2

r2
+ n(detCE(G ))2/n. (16)

Proof. As r and D are the minimum and maximum eccentricities of the vertices,

r ≤ ε(vi) ≤ D

or,
1

D
≤ 1

ε(vi)
≤ 1

r

or,
∑
i<j

(
2

D

)2

≤ Q =
∑
i<j

(
1

ε(vi)
+

1

ε(vj)

)2

≤
∑
i<j

(
2

r

)2

or,
4n(n− 1)

D2
≤ Q ≤ 4n(n− 1)

r2
· (17)

Then from (11) and (17),
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√
8n(n− 1)

D2
+ n(n− 1)(detCE(G ))2/n ≤ ϑ(CE(G ))

≤
√

8n(n− 1)2

r2
+ n(detCE(G ))2/n.

�

Theorem 4.5. Let G be a simple connected graph. If ϑ(CE(G )) is an integer, then it will
be an even integer.

Proof. Let ζ1, ζ2, . . . , ζr be the complete list of non negative eigenvalues of CE(G ). As
already given in (1),

tr(CE(G )) =
n∑
i=1

ζi =
r∑
i=1

ζi +
n∑

i=r+1

ζi = 0.

Therefore,
r∑
i=1

ζi = −

(
n∑

i=r+1

ζi

)
.

Thus,

ϑ(CE(G )) =
n∑
i=1

|ζi|

=
r∑
i=1

ζi −

(
n∑

i=r+1

ζi

)

= 2

r∑
i=1

ζi.

This completes the proof. �

5. Conclusions

The connective eccentric matrix CE(G ) and connective eccentric energy ϑ(CE(G )) of a
simple connected graph G are introduced. If the eccentricity of all the vertices are same,
then the complete connective eccentric spectrum and hence the connective eccentric energy
can be found easily. For a genral graph. an upper bound and a lower bound of spectral
radius of connective eccentric matrix are obtained. Upper and lower bounds of connective
eccentric energy are also obtained here.
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