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AVERAGE EVEN DIVISOR CORDIAL LABELING: A NEW VARIANT

OF DIVISIOR CORDIAL LABELING

V. SHARMA1, A. PARTHIBAN2∗, §

Abstract. In the present paper, a new variant of divisor cordial labeling, named,
an average even divisor cordial labeling, has been introduced. An average even di-
visor cordial labeling of a graph G∗ on n vertices, is defined by a bijective function

g∗ : V (G∗) → {2, 4, 6, ..., 2n} such that each e = ab is assigned label 1 if 2/ g∗(a)+g∗(b)
2

,
otherwise 0; then the difference of edges having labels 1 and 0 should not exceed by 1. A
graph is called an average even divisor cordial graph if it admits to average even divisor
cordial labeling. In this article, various general results of high interest are explored.
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1. Introduction

Assignment of labels (mostly integers) to vertices or/and edges of a graph G(V,E), under
some restrictions is called a graph labeling. Graph labeling being the frontier between
number theory and structure of graphs is the fastest growing area in the present world
due to its application in many important fields like coding theory, circuit design, database
management system, X-ray crystallography, radar and missile guidance, communication
networks and network security.
In this article, all graphs considered are simple, finite, connected, and undirected. We
refer to [3] and [5] respectively for various terms related to number theory and graph
theory that are used and essential for understanding of this research article. More than
3000 research papers on different type of graph labeling can be found in [4] along with
considerable bibilography. For definitions and other related literature we refer to [1] [4]
and [10]. Cahit [2] introduced the theme of cordial labeling. After Cahit, various authors
explored different variants of cordial labeling with a slight change in the cordial theme.
The one among those is divisor cordial labeling [11]. To enrich the field further, a few
variants of divisor cordial labeling namely square divisor cordial [9], cube divisor cordial
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[6], sum divisor cordial [8], double divisor cordial [13] etc. are introduced and studied
which motivated us to introduce the present variant named average even divisor cordial
labeling. We use AEDCL and AEDCG respectively to denote average even double divisor
cordial labeling and average even double divisor cordial graph.

Definition 1.1. AEDCL of a graph H∗ having node set VH∗ is a one-one, onto map
h∗ from VH∗ to {2, 4, 6, ..., 2|VH∗ |} so that each edge u1v1 is allocated the label 1, when

2/h∗(u1)+h∗(v1)
2 and 0 otherwise; then the modulus of difference of the count of edges having

labels 1 and 0 is at the most 1. A graph is considered an AEDCG if it admits an AEDCL.

Note: The terms node and vertex are interchangeable.

2. Main Results

In this section, we explore some general results on AEDCL of graphs.

Theorem 2.1. Let G∗ admits AEDCL and is of even size then G∗ ± e also admits an
AEDCL.

Proof. Since G∗ is an AEDCG of even size therefore ef (0) = ef (1). Clearly, an addition
or deletion of one edge will yield either ef (0) = ef (1) + 1 or ef (1) = ef (0) + 1 which in
turn justifies that |ef (0)− ef (1)| ≤ 1. �

Theorem 2.2. Let G∗ be an AEDCG of odd size then G∗ − e admits an AEDCL.

Proof. Given G∗ a AEDCG of odd size. Therefore, either ef (0) = ef (1) + 1 or ef (1) =
ef (0) + 1. Suppose ef (0) = ef (1) + 1. Removing an edge having label 0 yields |ef (0) −
ef (1)| ≤ 1. Similarly, if ef (1) = ef (0) + 1, then removing any edge having label 1 results
in AEDCG again. �

Remark 2.1. On similar lines of proof we can observe that above theorem also holds good
for G∗ + e.

Theorem 2.3. Kn does not admit AEDCL for n ≥ 4.

Proof. For K2 and K3, result is obvious.
For n ≥ 4, let {ui : 1 ≤ i ≤ n} denotes the node set of Kn. We define f : V (Kn) →
{2, 4, 6, ..., 2n} by taking f(ui) = 2i; 1 ≤ i ≤ n. Now we have two cases.
Case (i): When n is even.
Observing the labeling pattern, we find that ef (1) = ef (0)− n

2 , which implies that |ef (0)−
ef (1)| = n

2 or |ef (0)− ef (1)| ≥ 2.
Case (ii): When n is odd.
Observing f , we find that ef (1) = ef (0)− bn2 c which shows that |ef (0)− ef (1)| = bn2 c or
|ef (0)− ef (1)| ≥ 2.
Thus, in both the cases Kn, n ≥ 4 is not an AEDCL. �

Observation 1: For a graph G admitting AEDCL, its supergraph need not admit AEDCL
as complete graph is always a supergraph of a given graph with same number of nodes.

Observation 2: For a graph G admitting an AEDCL, its subgraph need not admit
AEDCL. For the explanation, we consider C10 and W10. C10 is a subgraph of W10. Further,
W10 admits an AEDCL but C10 does not.

Theorem 2.4. Km,n admits an AEDCL.
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Figure 1. K2 are K3 admitting AEDCL and K4 is not

Figure 2. C10 is not admitting AEDCL, whereas W10 is admitting

Proof. Let V (Km,n) = V1∪V2, where V1 = {x1, x2, ..., xm} and V2 = {y1, y2, ..., yn}. Vertex
labeling is done by considering a bijective function f∗ : V (Km,n) → {2, 4, 6, ..., 2m + 2n}
as given here. Let f∗(x1) = 2, f∗(xi) = f∗(xi−1) + 2; 2 ≤ i ≤ m,
f∗(y1) = f∗(xm) + 2, f∗(yi) = f∗(yi−1) + 2; 2 ≤ i ≤ n.
Observe that when mn is even, then ef∗(0) = ef∗(1) = mn

2 , and when mn is odd then
|ef∗(0)− ef∗(1)| = 1, which shows that Km,n admits an AEDCL. �

Definition 2.1. [12] A full binary tree is a binary tree in which each internal vertex has
exactly 2 childern.

Theorem 2.5. Full n− ary tree admits an AEDCL, where n = 2k, k ∈ N.

Proof. Let T denotes the full n−ary tree. Clearly, zeroth level has one node, first level has
n nodes, second level has n2 nodes, third level has n3 nodes and mth level has nm nodes.
Define f : V (T ) → {2, 4, 6, ..., 2(nm + nm−1 + nm−2 + ... + n + 1)} such that the node
of zeroth level be labeled with 2. For first level, assign the labels, begining from leftmost
node and proceeding to right, simultaneously from the available labels. By doing so, the
last node of the first level is labeled with 2n + 2. Similarly, for second level, the last node
has label 2(2n+ 2) + 2. Proceeding this way, we find that the last(rightmost) node in mth

level has 2nm + 2nm−1 + 2nm−2 + ...+ 2n+ 2 label. Note that in every level, ef (0) = ef (1)
which means that |ef (0)− ef (1)| = 0 and hence T admits an AEDCL. �

Theorem 2.6. All trees are AEDCG.
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Figure 3. AEDCL of full 4− ary tree having 2 levels

Proof. Let Tk denotes a tree with k edges. We show that Tk is an AEDCG. We prove
the theorem by principle of mathematical induction. Suppose k = 2, the T2 is a path on
3 nodes which is an AEDCG. Now suppose the result is true for k − 1, i.e; Tk−1 is an
AEDCG. We show that Tk is an AEDCG. Adding one edge in Tk−1 also admits AEDCL
(by Theorem 2.1), we see that Tk is an AEDCG, which completes the induction. Hence
Tk is an AEDCG. �

Lemma 2.1. Pn admits an AEDCL.

Proof. Let V (Pn) = {pi : 1 ≤ i ≤ n} and E(Pn) = {pipi+1 : 1 ≤ i ≤ n − 1}. Consider a
bijective function g∗ : V (Pn)→ {2, 4, 6, ..., 2n} defined as given.
Case(i). When n is even.
Let g∗(p1) = 2, g∗(pi) = g∗(pi−1) + 2; 2 ≤ i ≤ n

2 , g∗(pn
2

+1) = g∗(pn
2
) + 4.

Now we have two subcases.
Subcase(i). When n

2 is even.
Fix g∗(pi) = g∗(pi−1) + 4; n

2 + 2 ≤ i ≤ n
2 + n

4 ,
g∗(pn

2
+n

4
+1) = g∗(pn

2
) + 2, g∗(pi) = g∗(pi−1) + 4; n

2 + n
4 + 2 ≤ i ≤ n. One can see that

|eg∗(0)− eg∗(1)| ≤ 1.
Subcase(ii). When n

2 is odd.
Put g∗(pi) = g∗(pi−1) + 4; n

2 + 2 ≤ i ≤ n
2 + bn4 c,

g∗(pn
2

+bn
4
c+1) = g∗(pn

2
) + 2, g∗(pi) = g∗(pi−1) + 4; n

2 + bn4 c+ 2 ≤ i ≤ n.

One can see that |eg∗(0)− eg∗(1)| ≤ 1.
Case(ii). When n is odd.
Let g∗(p1) = 2, g∗(pi) = g∗(pi−1) + 2; 2 ≤ i ≤ bn2 c,
g∗(pbn

2
c+1) = g∗(pbn

2
c) + 4, g∗(pi) = g∗(pi−1) + 4; bn2 c+ 2 ≤ i ≤ k < n, where g∗(pk) ≤ 2n.

Next, g∗(pk+1) = g∗(pbn
2
c)+2, g∗(pk+2) = g∗(pk+1)+4, g∗(pi) = g∗(pi−1)+4; k+3 ≤ i ≤ n.

An easy check shows that |eg∗(0)− eg∗(1)| ≤ 1. �

Lemma 2.2. Cn admits an AEDCL for all n except when n ≡ 2( mod 4).

Proof. Let V (Cn) = {ci : 1 ≤ i ≤ n} and E(Cn) = {cici+1 : 1 ≤ i ≤ n − 1} ∪ {cnc1}.
Consider a bijective function g∗ : V (Cn)→ {2, 4, 6, ..., 2n} defined as given.
Case(i). When n is odd.
Fix g∗(c1) = 2, g∗(ci) = g∗(ci−1) + 2; 2 ≤ i ≤ bn2 c, g

∗(cbn
2
c+1) = g∗(cbn

2
c) + 4, g∗(ci) =

g∗(ci−1) + 4; bn2 c + 2 ≤ i ≤ k < n, where g∗(ck) ≤ 2n. Next, g∗(ck+1) = g∗(cbn
2
c) + 2,
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g∗(ck+2) = g∗(ck+1) + 4, g∗(ci) = g∗(ci−1) + 4; k + 3 ≤ i ≤ n. One can verify that
|eg∗(0)− eg∗(1)| = 1.
Case (ii). When n ≡ 4( mod 4).
Let g∗(c1) = 2, g∗(ci) = g∗(ci−1) + 2; 2 ≤ i ≤ n

2 , g∗(cn
2

+1) = g∗(cn
2
) + 4, g∗(ci) = g∗(ci−1);

n
2 + 2 ≤ i ≤ n

2 + n
4 , g∗(cn

2
+n

4
+1) = g∗(cn

2
) + 2, g∗(ci) = g∗(ci−1) + 4; n

2 + n
4 + 2 ≤ i ≤ n.

One can see that |eg∗(0)− eg∗(1)| = 1.
Case(iii). When n ≡ 2( mod 4).
Here, in this case, either eg∗(0) = eg∗(1) + 2 or eg∗(1) = eg∗(0) + 2, which means that g∗

is not AEDCL.
�

Lemma 2.3. Wn admits an AEDCL, ∀n 6= 4k + 3, k ∈ N .

Proof. Let V (Wn) = {x0, xi : 1 ≤ i ≤ n} and E(Wn) = {x0xi, xixi+1 : 1 ≤ i ≤ n − 1} ∪
{xnx1}. Consider a bijective function g∗ : V (Wn)→ {2, 4, 6, ..., 2n + 2} defined as given.
Case(i): When n = 4k
Put g∗(x0) = 2, g∗(x1) = 4, g∗(xi) = g∗(xi−1) + 2; 2 ≤ i ≤ n

2 − 1, g∗(xn
2
) = g∗(xn

2
−1) + 4,

g∗(xi) = g∗(xi−1) + 4; n
2 + 1 ≤ i ≤ k < n, such that g∗(xk) ≤ 2n + 2. Next, g∗(xk+1) =

g∗(xn
2
−1) + 2, g∗(xi) = g∗(xi−1) + 4; k + 2 ≤ i ≤ n. One can easily verify that |eg∗(0) −

eg∗(1)| = 0.
Case(ii): When n = 4k + 2.
Let g∗(x0) = 4, g∗(x1) = 2, g∗(x2) = 6 g∗(xi) = g∗(xi−1) + 2; 3 ≤ i ≤ n

2 , g∗(xn
2

+1) =

g∗(xn
2
) + 4, g∗(xi) = g∗(xi−1) + 4; n

2 + 2 ≤ i ≤ k < n, such that g∗(xk) ≤ 2n + 2. Next,

fix g∗(xk+1) = g∗(xn
2
) + 2, g∗(xi) = g∗(xi−1) + 4; k + 2 ≤ i ≤ n. In this case also,

|eg∗(0)− eg∗(1)| = 0.
Case(iii): When n = 4k + 1.
Put g∗(x0) = 2, g∗(x1) = 4, g∗(xi) = g∗(xi−1) + 2; 2 ≤ i ≤ n−1

2 , g∗(xn+1
2

) = g∗(xn−1
2

) + 4,

g∗(xi) = g∗(xi−1) + 4; n+1
2 + 1 ≤ i ≤ k < n, such that g∗(xk) ≤ 2n + 2. Next, g∗(xk+1) =

g∗(xn−1
2

) + 2, g∗(xi) = g∗(xi−1) + 4; k + 2 ≤ i ≤ n.

One can observe that |eg∗(0)− eg∗(1)| = 0.
Case(iv): When n = 4k + 3.
Here, in this case, either eg∗(0) = eg∗(1) + 2 or eg∗(1) = eg∗(0) + 2, which means that g∗

is not AEDCL.
�

Definition 2.2. [1] If H∗ is a graph of order r, then the corona product of H∗ with another
graph K∗, represented by H∗�K∗ is a graph acquired by considering one copy of H∗ and
r copies of K∗ thereby connecting the rth node of H∗ by an edge to each node in the rth

copy of K∗.

Theorem 2.7. Let G∗(p, q) be an AEDCG then G∗ � K̄t admits AEDCL for t ≡ 0(
mod 2).

Proof. Given G∗(p, q) is an AEDCG with V (G∗) = {u∗i : 1 ≤ i ≤ p}, therefore there exists
vertex labeling g : V (G∗) → {2, 4, 6, ..., 2p} on G∗ such that |eg(0) − eg(1)| ≤ 1. Given

t ≡ 0( mod 2), we fix t = 2m. Consider G∗�K̄2m with V (G∗�K̄2m) = V (G∗)∪{k(i)
j : 1 ≤

i ≤ p, 1 ≤ j ≤ 2m} and E(G∗�K̄2m) = E(G∗)∪{u∗i k
(i)
j : 1 ≤ i ≤ p, 1 ≤ j ≤ 2m}. Consider

bijective function f : V (G∗ � K̄2m) → {2, 4, 6, ..., 2p, 2p + 2, ..., 2p + 2p(2m)} defined as
here. Let f(u∗i ) = g(u∗i ); 1 ≤ i ≤ p. We are left with {2p + 2, 2p + 4, ..., 2p + 2p(2m)}
labels. Start assigning these labels simultaneously, begining with first copy of K̄2m that
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is attached to u∗1 and then slowly proceeding to the right most copy, i.e; the one attached
with u∗p. Here are the following observations:
(i) When q is even, then eg(0) = eg(1) and pendant vertices that appear at each u∗i yields
equal number of edges with labels 1 and 0. Thus, ef (0) = ef (1).
(ii) When q is odd, then either eg(0) = eg(1) + 1 or eg(1) = eg(0) + 1. But pendant edges
at each u∗i yield equal number of edges with 1 and 0 which implies that |eg(0)−eg(1)| = 1,
which proves that G∗ � K̄2m is an AEDCG. �

Figure 4. AEDCL of G∗ � K̄2m

Corollary 2.1. Pn � K̄2m is an AEDCG.

Proof. The proof follows directly from Lemma 2.1 and Theorem 2.7. �

Corollary 2.2. Cn � K̄2m, n 6= 4k + 2, k ∈ N is an AEDCG.

Proof. The proof follows directly from Lemma 2.2 and Theorem 2.7. �

Figure 5. Disjoint union of n copies of H

Theorem 2.8. The disjoint union of n− copies of H admits an AEDCL, where H is an
AEDCG of even size.
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Proof. Let H(p, q) admits an AEDCG with vertex labeling f . Let V (H) = {v1, v2, ..., vp}.
Let G = nH as shown in Figure 5 with V (G) = {vij : 1 ≤ j ≤ p; 1 ≤ i ≤ n}. Define a

function f ′ : V (G)→ {2, 4, ..., 2np} as follows:
f ′(v1

j ) = f(v1
j ); 1 ≤ j ≤ p;

f ′(v2
j ) = f ′(v1

j ) + 2p; 1 ≤ j ≤ p;

f ′(v3
j ) = f ′(v2

j ) + 2p; 2 ≤ j ≤ p;

Proceeding this way, we have f ′(vnj ) = f ′(vn−1
j ) + 2p; 2 ≤ j ≤ p;

Now, one can easily check that ef ′(0) = ef ′(1), which establishes that G is an AEDCG. �

Corollary 2.3. Let G be an AEDCG of even size and G∗ be a copy of G. Then G ∪G∗

is also an AEDCG.

Proof. Since G, with V (G) = {u1, u2, ..., un} is an AEDCG, with labeling f , and is of
even size, therefore ef (0) = ef (1). Let G∗ with V (G∗) = {u′1, u′2, ..., u′n} be a copy of G.
Let H = G ∪ G∗, we define labeling h on V (H) by taking h(ui) = f(ui) ; 1 ≤ i ≤ n and
h(u′i) = h(ui) + 2n; 1 ≤ i ≤ n. This way, eh(0) = eh(1), hence G ∪G∗ is AEDCG. �

Theorem 2.9. Let G(p, q) be an AEDCG and is of even size. Then G + G is also an
AEDCG.

Figure 6. AEDCL of G + G

Proof. The proof follows from Theorem 2.4 and Corollary 2.3.
�

Theorem 2.10. Ladder graph Ln = Pn × P2 is an AEDCG.

Proof. Let V (Ln) = {ui, vi : 1 ≤ i ≤ n} and E(Ln) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {vivi+1 :
1 ≤ i ≤ n− 1} ∪ {uivi : 1 ≤ i ≤ n}. Here, the cardinality of vertex set and edge set is 2n
and 3n− 2, respectively. Vertex labeling is performed by considering a bijective function
f : V (Ln)→ {2, 4, 6, ..., 4n} defined under the following cases.
Case (i). When n = 4k, k ∈ N.
Let f(u1) = 2, f(ui) = f(ui−1) + 2; 2 ≤ i ≤ n− 1, f(un) = f(un−1) + 4, f(v1) = 4n− 2,
f(vi) = f(vi−1) − 4; 2 ≤ i ≤ n

2 − 1, f(vn
2
) = 4n, f(vi) = f(vi−1) − 4; n

2 + 1 ≤ i ≤ n. We

can see that ef (0) = ef (1).
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Case (ii). When n = 4k − 1, k ∈ N.
Let f(u1) = 2, f(ui) = f(ui−1) + 2; 2 ≤ i ≤ n, f(v1) = 4n − 2, f(vi) = f(vi−1) − 4;
2 ≤ i ≤ bn2 c, f(vdn

2
e) = 4n, f(vi) = f(vi−1) − 4; dn2 e + 1 ≤ i ≤ n. One can easily verify

that ef (0) = 3n−1
2 and ef (1) = 3n−3

2 .
Case (iii). When n = 4k − 3, k ∈ N− {1}.
Let f(u1) = 2, f(ui) = f(ui−1) + 2; 2 ≤ i ≤ n − 2, f(un−1) = f(un−2) + 4, f(un) =
f(un−1) + 4, f(v1) = 4n − 2, f(vi) = f(vi−1) − 4; 2 ≤ i ≤ bn2 c − 1, f(vbn

2
c) = 4n,

f(vi) = f(vi−1)−4; bn2 c+1 ≤ i ≤ n. It can be verified that ef (0) = 3n−3
2 and ef (1) = 3n−1

2 .
Case (iv): When n = 4k − 2, k ∈ N− {1}.
Let f(u1) = 2, f(ui) = f(ui−1) + 2; 2 ≤ i ≤ n − 2, f(un−1) = f(un−2) + 4, f(un) =
f(un−1) + 4, f(v1) = 4n, f(vi) = f(vi−1) − 4; 2 ≤ i ≤ n

2 − 1, f(vn
2
) = 4n − 2, f(vi) =

f(vi−1)− 4; n
2 + 1 ≤ i ≤ n. Here ef (0) = ef (1).

We observe in all the cases that |ef (0)−ef (1)| ≤ 1, which proves that Ln is an AEDCG. We
observe in all the cases that |ef (0)− ef (1)| ≤ 1, which proves that Ln is an AEDCG. �

Theorem 2.11. Triangular ladder TLn is an AEDCG.

Proof. Let V (TLn) = {ui, vi : 1 ≤ i ≤ n} and E(TLn) = {uiui+1 : 1 ≤ i ≤ n−1}∪{vivi+1 :
1 ≤ i ≤ n−1}∪{uivi : 1 ≤ i ≤ n}∪{viui+1 : 1 ≤ i ≤ n−1}. Vertex labeling is performed by
considering a bijective function f : V (TLn)→ {2, 4, 6, ..., 4n} defined by fixing f(u1) = 2,
f(ui) = f(ui−1) + 4; 2 ≤ i ≤ n, f(v1) = 4, f(vi) = f(vi−1) + 4; 2 ≤ i ≤ n. It is noted here
that |ef (0)− ef (1)| ≤ 1 which implies that TLn is an AEDCG. �

Theorem 2.12. Square grid Pn × Pn admits AEDCL.

Proof. Let V (Pn × Pn) = {v(j)
i : 1 ≤ i ≤ n, 1 ≤ j ≤ n} represents the node set of

Pn × Pn, where v
(j)
i represents the ith node of jth copy. Clearly, |V (Pn × Pn)| = n2 and

|E(Pn×Pn)| = 2n2− 2n. Vertex labeling is performed by considering a bijective function
f : V (Pn × Pn)→ {2, 4, 6, ..., 2n2} defined by the following cases.
Case (i): When n is even.

Let f(v
(1)
1 ) = 2, f(v

(1)
i ) = f(v

(1)
i−1) + 4; 2 ≤ i ≤ n,

f(v
(2)
1 ) = 4, f(v

(2)
i ) = f(v

(2)
i−1) + 4; 2 ≤ i ≤ n,

f(v
(3)
1 ) = f(v

(1)
n ) + 4, f(v

(3)
i ) = f(v

(3)
i−1) + 4; 2 ≤ i ≤ n,

f(v
(4)
1 ) = f(v

(2)
n ) + 4, f(v

(4)
i ) = f(v

(4)
i−1) + 4; 2 ≤ i ≤ n,

..., ..., ...,

..., ..., ...,

f(v
(n−1)
1 ) = f(v

(n−3)
n ) + 4, f(v

(n−1)
i ) = f(v

(n−1)
i−1 ) + 4; 2 ≤ i ≤ n

f(v
(n)
1 ) = f(v

(n−2)
n ) + 4, f(v

(n)
i ) = f(v

(n)
i−1) + 4; 2 ≤ i ≤ n.

It is noted here that ef (0) = ef (1) = n2 − n which implies that Pn × Pn is an AEDCG.
Case (ii): When n is odd.
For first n−1 steps, follow the pattern of case (i). For last row, proceed with the remaining
labels as per Lemma 2.1.
In this case, |ef (0)− ef (1)| ≤ 1 which establishes that Pn × Pn is AEDCG. �

Definition 2.3. [7] The stack Sk of books is a union of k−copies of triangular book K1,1,5

denoted by B5, joined in a way that their spines form a path.

Lemma 2.4. Triangular book graph K1,1,n admits an AEDCG.
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Figure 7. AEDCL of P5 × P5

Proof. For labeling of generalised triangular book graph with V (K1,1,n) = {x0, x
′
0, x1, x2, ...,

xn}, we define a bijective function f : V (K1,1,n) → {2, 4, ..., 2n + 4} in such a way that
spine nodes, namely, x0 and x′0 be fixed 2 and 4 respectively and allocate the unused labels
to remaining nodes in any fashion. �

Theorem 2.13. Sk admits an AEDCG.

Proof. Let V (Sk) = V (Pk+1) ∪ {v(j)
i : 1 ≤ i ≤ 5, 1 ≤ j ≤ k} and E(Sk) = E(Pk+1) ∪

{pjv(j)
i , pj+1v

(j)
i : 1 ≤ i ≤ 5, 1 ≤ j ≤ k} represents respectively the node set and edge

set of Sk, where v
(j)
i represents the ith node of jth copy. Clearly, |V (Sk)| = 6k + 1

and |E(Sk)| = 11k. Vertex labeling is performed by considering a bijective function
f : V (Sk) → {2, 4, 6, ..., 2(6k + 1)}. First label the k + 1 nodes of Pk+1 by using Lemma
2.1. This way {2, 4, ..., 2k + 2} labels are exhausted. Now start assigning the remaining
labels simultaneously, begining with the first node of degree 2 of first copy of B5 and
proceeding to the last node of last copy. Clearly, |ef (0)−ef (1)| ≤ 1 which establishes that
Sk admits an AEDCL.

�

Figure 8. AEDCL of Sk
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Theorem 2.14. Let G and H be two isomorphic graphs. If G admits an AEDCL then H
also does.

Proof. Let G and H be two graphs with isomorphism f from V (G) = {u1, u2, ..., up} to
V (H) = {v1, v2, ..., vp}. Let g∗ be an AEDCL of G. If e = uiuj ∈ E(G) implies f(e =
uiuj) ∈ E(H) for any i, j. Let g∗(ui) = r, g∗(uj) = s for some r, s ∈ {2, 4, ..., 2p} such that
|eg∗(0) − eg∗(1)| ≤ 1. Now define h : V (H) → {2, 4, ..., 2p} such that h(f(ui)) = g∗(ui);
1 ≤ i ≤ p. Then h is desired AEDCL of H as |eg∗(0)− eg∗(1)| = |eh(0)− eh(1)| ≤ 1. �

3. Conclusion

In this paper a new variant of divisor cordial labeling, named, an average even divisor
cordial labeling has been investigated for various classes of graphs. We have established
that complete graphs, complete bipartite graphs, square grid and full n − ary tree are
AEDCG.
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