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UNCERTAINTY QUANTIFICATION OF MULTIVARIATE GAUSSIAN

PROCESS REGRESSION FOR APPROXIMATING MULTIVARIATE

COMPUTER CODES

YOUNUS AL-TAWEEL1, §

Abstract. Gaussian process regression (GPR) models have become popular as fast al-
ternative models for complex computer codes. For complex computer code (CC) with
multivariate outputs, a GPR model can be constructed separately for each CC output,
ignoring the correlation between the different outputs. However, this may lead to poor
performance of the GPR model. To tackle this problem, multivariate GPR models are
used for complex multivariate deterministic computer codes. This paper proposes mea-
sures for quantifying uncertainty and checking the assumptions that are proposed in
building multivariate GPR models. For comparison, we also constructed a univariate
GPR model for each CC output to investigate the effect of ignoring the correlation be-
tween the different outputs. We found that the multivariate GPR model outperforms
the univariate GPR model as it provides more accurate predictions and quantifies un-
certainty about the CC outputs appropriately.

Keywords: multivariate Gaussian process, measures, multivariate deterministic computer
codes.

AMS Subject Classification: 83-02, 99A00

1. Introduction

Simulations have become popular methods for investigating real-world systems. This
simulation is achieved via a complex computer code (CC) which is a mathematical repre-
sentation of a real system. Complex CCs, however, can be time-consuming and so running
the CC can only be done at a fixed number of runs. Statistical models have become a
practical solution for tackling the time-consuming problem of CCs. The outputs of CC
are considered to be realizations of a random process. The Bayesian framework is used
to construct a probability distribution, called Gaussian process regression (GPR) model,
that can be conducted to obtain approximations of the CC outputs and for uncertainty
quantification of its outputs.

GPR models are statistical techniques that have been applied in a variety of sectors
in science and technology. In engineering modeling, for example, [1] used GPR models
for accounting for the uncertainty of a design of an infantry fighting vehicle. [2] built
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a GPR model to quantify the uncertainty of bridge model outputs. [3] used a GPR
model to obtain approximations of an engine shaft horsepower. In climate modeling,
[4] used a GPR model for a global aerosol to provide sensitivity analysis for unknown
parameters. [5] interpolated outputs of model for Earth Climate System. [6] used a
GPR model for inferring a background ocean vertical diffusivity parameter in climate
models. [7] quantified the contributions of remote and local black carbon emissions to its
concentrations using GPR models.

In environment modeling, [8] performed a global sensitivity analysis using GPR models
for remotely based vegetation indices. [9] used GPR models to provide approximations of
a land biosphere model. [10] investigated the performance of GPR models for modeling
wildland fire emissions. In health modeling, [11] used regression models to reduce the time
for running computationally expensive health economic models. [12] used a GPR model for
a gravity model to make inferences for the Spatio-temporal dynamics of infectious diseases.
[13] constructed a GPR model for complex infection disease models. The GPR model was
used by [15] to provide variance-based sensitivity indices of a cardiac cell model. In
deterministic computer modeling, the GPR model was used by [14] with computationally
unstable correlation matrices to interpolate deterministic CCs. [16] used GPR models to
solve boundary value problems. [17] used the GPR model for uncertainty quantification
based on the lower bound error of the regression model.

In several areas, however, complex CCs may have multiple outputs. Univariate GPR
models can be built separately for each output of the CC, ignoring the correlation between
the outputs. This may not capture information between the outputs. To solve this prob-
lem, a multivariate GPR model can be used for complex multivariate CCs to model the
outputs jointly. Multivariate GPR models take into account the correlation between the
outputs. In this work, we propose some measures for checking the assumptions that are
used in constructing multivariate GPR models as surrogates for multivariate deterministic
CCs. Using the proposed measures, the performance of the multivariate GPR models with
that of univariate GPR models is compared for each CC output.

The following is the order of the paper. In Section 2, we presents the concept of mul-
tivariate GPR models for multivariate CCs. In Section 3, the procedure of constructing
multivariate regression models is explained. Section 4 reviews designs for generating train-
ing and test points. In Section 5, various measures for validating multivariate regression
models. In Section 6, multivariate regression models are applied to some multivariate CCs
examples. Finally, in Section 7, the conclusion is given.

2. Multivariate GPR model

Univariate GPR models were first used by [18] where they provide the process of con-
structing a GPR model for one output CC. Then, GPR models have been used widely
under a Bayesian framework. Modern applications of complex CCs tend to have multiple
outputs. A generalization of multiple univariate GPR models is known as a multivariate
GPR model. Multivariate GPR models deal with CCs that have more than one output.
For simplicity, one can construct a GPR model for each output of the multivariate CC
separately, ignoring the correlation between outputs. However, the outputs of multivariate
CCs may not be independent and therefore, the results may not be accurate. To consider
the structure in the model outputs, multivariate GPR models can be used for multivariate
CCs to obtain more accurate results than using a univariate GPR model for each output.

The multivariate to the Gaussian process (GP) was considered in different ways. For
example, [19] generalized univariate GPR models to matrix Gaussian with a column co-
variance matrix with a separable covariance function and a row covariance matrix that
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is considered as an extra hyperparameter. [20] used principal components for the dimen-
sional reduction of a multivariate output CC. They assumed the principal components to
be independent. [21] built a GPR model using the between-output metric. He presented a
method that considers a Cartesian grid for constructing GPR model for the multidimen-
sional outputs of the CC.

These methods, however, suffer from the problem of separability of the covariance matrix
that implies the same roughness parameters for each output. This may not be suitable,
for example, for multivariate CCs that have different types of outputs as the correlation
functions will not be accurately specified. In order to allow the roughness parameters to
be varied, a nonseparable covariance matrix has been used. For example, [22] showed that
for two positive definite covariance functions, the convolution matrix is positive definite.
[23] constructed a multivariate GPR model for a CC that simulates multiple types of
outputs simultaneously. They presented a nonseparable covariance function using the
convolution approach. They used two methods to construct a nonseparable covariance
function, coregionalization models and convolution methods.

In this work, we investigate the performance of measures for validating multivariate
GPR models. [24] developed a graphical method, called the coverage interval (CI), that
can be used to evaluate the number of test outputs that are within the of (1 − α)100%
intervals. The CI measure can be used to find the proportion of the test outputs that
are within the (1 − α)100% intervals with multiple values of (1 − α). Thus, it tests
the Gaussian assumption in building GPR models. [24] investigated the performance of
the CI measure for univariate GPR models. Therefore, we develop and extend the CI
measure for multivariate GPR models. For comparison, we also construct a GPR model
for each output of the CC and see the effect of ignoring the correlation between the
different outputs. For additional confirmations, we apply some other measures to see the
performance of multivariate GPR models.

3. Building multivariate GPR model

In this section, we review an approach, given by [25], for constructing the multivariate
GPR model. This case of the multivariate GPR model is computationally tractable.
Suppose we have a multivariate CC, f(·) : χ → Rk, of input, x ∈ χ → Rp and produces
a output y ∈ Rk, where k > 1, p is the dimension of the input. The function f(·) is
considered to be an unknown. The uncertainty is represented by the Gaussian process
conditional on parameters.

Let X(r) = (X1, . . . ,Xnr), where nr is the set of input points, and r ≤ k are observations
of kind r and therefore, the Xr

[nr×p] is the design matrix for the observations of kind r.

Thus, in the multivariate GPR model, k different kinds of observations exists, fr(·), for
r = 1, . . . , k. Each of which follows a GP

f(·)|β,Σ, r ∼ Nk(m(·), c(·, ·)Σ). (1)

The mean function is given by a linear function

m(x) = Hβ =


h1(X1)T 0 · · · 0

0 h2(X2)T · · · 0
...

...
. . .

...

0 0 · · · hk(X
k)T



β1

β1
...
βk

 , (2)
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where hr(·) are the regression functions, h1(x), . . . , hq(x), for the kind r of the obser-
vations. Therefore, the generalized regressor matrix is H[

∑k
r=1 nr×

∑k
r=1 qr]. The β =

(β0, . . . , βk) is a vector of coefficient parameters.
The covariances between the different kinds of the observations, r 6= s, is given by

Cov(fr(x), fs(x
′)) 6= 0 where fr(x) and fs(x

′) are outputs of the inputs x and x′ at the
observations kind r and s. Thus, the covariance matrix is given by

Σ =


Σ(11) Σ(12) · · · Σ(1k)

Σ(21) Σ(22) · · · Σ(2k)

...
...

. . .
...

Σ(k1) Σ(k2) · · · Σ(kk)

 . (3)

The covariance between different outputs, kinds r and s, at any input point is determined
by Σ(rs). The covariance function depends on k positive correlation parameters θ =
(θ1, . . . , θk).

The Σ in equation (3) is formulated such that Σ(rr) to be determined by standard
methods from univariate analysis, using

Cov(fr(x), fr(x
′)) = σ2C(x,x′), (4)

where the elements i, jth of C(x,x′) is the covariance between the i output when it is run
at input x and the j when run at input x. The covariance function is given as Crs(x,x

′) =

Cov(fr(x), fs(x
′)). Thus, we have Σ(rs)Crs(X

r,Xs) as the matrix of covariances between
the r kind of observations and the kind s observations, i.e. between fr(X

r) and fs(X
s).

The multivariate covariance structure Σrs must be positive definite in which Σ in equa-
tion (3) must be positive definite for X1,X2, . . . ,Xk. The Crs(t) = Crs(x−x′) is a matrix
and it is given by the formula

Crs(t) =

∫
w∈Rq

eiw
T tdFrs(w), (5)

where Frs(w) is a positive definite matrix. For every w, |f(w)| is utilized for the matrix
containing the entry (r, s), and it must be positive definite. The general form with k = 3
for illustration is

‖g(w)‖ =

G1 0 0
0 G2 0
0 0 G3

 . (6)

where G1 =
exp[− 1

2
wTS−1

1 w]

|2πS1|1/2
, G2 =

exp[− 1
2
wTS−1

2 w]

|2πS2|1/2
and G3 =

exp[− 1
2
wTS−1

3 w]

|2πS3|1/2
. In practice we

choose C(t)=exp−tTBt where B = S−1

2 . This gives Cov(fr(x), fr(x
′)) = σ2C(x,x′) =

exp−tTBt. This ensures that the matrixSi are positive definite.
In order to account for nonzero covariances between the different kinds of observations,

a positive semi-definite matrix is used

‖f(w)‖ =

 G1 G1.2 G1.3

G2.1 G2 G2.3

G3.1 G3.2 G3

 , (7)

where G1.2 = G2.1 =
exp[− 1

2
wT ( 1

2
S−1
1 + 1

2
S−1
2 )w]

|2πS1|1/4·|2πS2|1/4
, G1.3 = G3.1 =

exp[− 1
2
wT ( 1

2
S−1
1 + 1

2
S−1
3 )w]

|2πS1|1/4·|2πS3|1/4
,

G2.3 = G3.2 =
exp[− 1

2
wT ( 1

2
S−1
2 + 1

2
S−1
3 )w]

|2πS2|1/4·|2πS3|1/4
. The product of a positive semi-definite matrix
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and a positive definite matrix is a positive definite

C ′rs(t) = MrsCrs(t)

where M[k×k] is to account for the covariance between the different kinds of observations.
The possibility of using other forms of the covariance function, in equation (7) is discussed
by [25]. By integrating β out, we will have

f(·)|y,θ ∼ GPk
(
m‡(·),C‡(·, ·)

)
(8)

so that for new observations X? = (x?1, . . . , x
?
n), we obtain the posterior mean m‡(X?) and

the posterior covariance C‡(X?, X?) as

m‡(X?) = H(X?)β̂ + F(X?)V−1(y−Hβ̂) (9)

C‡(X?, X?) = C(X?, X?)− F(X?)V−1F(X?)T (10)

+ (H(X?)− F(X?)V−1H)(HV−1H)(H(X?)− F(X?)V−1H)T ,

where β̂ =
(
HV−1H

)−1
HV−1y, F(X?) = C(X?, X) , H = Ik⊗h(X) and V = C(X,X).

In order to remove the conditioning on θ, they are estimated, θ̂ and treated as known
instead of the true value θ, ignoring the uncertainty.

3.1. Estimating the hyperparameters. The scaler variance σ2 in the univariate GPR
model can be generalized to a positive definite Mk×k. The Mk×k represents the covariances
between the different kinds of observations. Then, the next steps are conditional on the
roughness parameters and the matrix M . Thus, the roughness parameters are estimated
first for each kind of observations separately. Then, the marginal variances are computed
analytically for the posterior mode to be the diagonal of the matrix M . Finally, the off-
diagonal of the matrix M is estimated using the determination of the posterior mode. A
flat prior may be used to ensure positive definiteness. This procedure for estimating the
hyperparameters works well in practice [25].

4. Design of experiment

To generate the training and test points, the maximin Latin hypercube design (maximin
LHD) is used, which is based on distances between the input points [26]. The minimum
distance is first calculated between the points. After that we choose the design which
maximizes the minimum distance, i.e. the observations are generated as

X = max
X⊂Ω

min
{x,x′}∈X

dis(xi, xj). (11)

5. Measures for validating multivariate GPR models

In this section, we use some measures for investigating the performance of multivariate
GPR models. The first measure accounts the number of test outputs that are in 100α%
intervals. Thus, it is used to check the normality in GPR model. This measure is obtained
by

CI =
1

n?

n?∑
i=1

1(y?i ∈ CIi(α)). (12)

The 1 represents the indicator function and y?i is the test output. The observed value
for CI is expected to be close to α. The CI reference distribution can be found using
simulation as the CC outputs are correlated. We generate a large sample by a multivariate
t distribution with n− q degree of freedom (d.f.), m‡(X?) and C‡(X?, X?), and then, the
CI is calculated.
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The individual standardized errors (ISE) is another measure that we used. It is calcu-
lated as

ISE =
y?i −m‡(X?)√

C‡(X?, X?)
, (13)

The ISE depends on the differences between the GPR predicted points and the CC outputs
which are standardized using the squared root of the GPR variance. The errors of ISE
measure should be between -2 and 2 if the GPR model is valid. Thus, if large ISE values
are found, then the GPR model will not be valid and so the GPR predictions will not be
accurate.

6. Illustrative Example for Multivariate CC

In this section, we investigate the development of some measures for validating mul-
tivariate GPR models. For comparison, we also construct GPR model for each output
of the multivariate CC separately and see the accuracy of both models. We consider an
example to see the performance of the proposed measures. Consider a multivariate CC
given by

y1 = sin(5(x1 + x2)) + cos(20(x1 − x2)) (14)

y2 = 4 sin(5(x1 + x2)) + 7(x1 − x2). (15)

Thus, we have two input variables and two outputs. The y1 and y2 are chosen to be
correlated. We selected 30 training inputs for the first function and 20 training inputs
for the second function in the interval [0, 1]2 using maximin LHD. Then, we obtained
CC outputs at these training inputs. We will denote the outputs by y = (y1, y2). For
validating the GPR models, we generated n? = 20 test points by maximin LHD and run
the CC at these test points.

6.1. The Coverage Interval (CI) Measure. After obtaining multivariate GPR models
and univariate GPR models, we calculated the CI measure with different values of α for
each test output. We generated 1000 sampled of 20 test outputs from multivariate t
distribution with n−k d.f., m‡(X?) and C‡(X?, X?). Then, we obtained simulated values
of CI measure using equation (12). Figure 1 shows the observed CI values and their
simulated mean values for the univariate and multivariate GPR models of the output 1,
equation (14).

The left plot in Figure 1 shows the CI measure for univariate GPR model of the first
output. It is indicated that most of the observed CI values are not close to the simulated
mean values. Moreover, many of observed CI values are not within the 95% intervals. The
right plot in Figure 1 shows the CI measure for the multivariate GPR model of the first
output. It is shown that the observed CI values are so close to the simulated mean values.
Furthermore, all the observed CI values are within the 95% intervals.
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Figure 1. The observed CI values (red points) and simulated mean values
(black points), for the univariate and multivariate GPR models of the out-
put 1, equation (14), against different values of (1−α). The plots indicate
that the normality is not suitable for the univariate GPR model of the first
output.

Figure 2 shows the observed CI values and simulated mean values for the univariate
and multivariate GPR models of the output 2, equation (15).
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Figure 2. The observed CI values and the simulated mean values for the
univariate and multivariate GPR models of the output 2, equation (15).
The plots indicate that the normality is suitable for the univariate and
multivariate GPR models.

It is indicated that many observed CI values for univariate GPR model are far away from
the simulated mean values. However, all observed CI values are within the 95% intervals.
This indicates that the normality is reasonable for constructing GPR models. The right
plot is for the multivariate GPR model. It can be indicated that all the 95% intervals
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contain the observed CI values with the majority of the observed CI values are closer to
the simulated mean values, indicating that the normality is reasonable for constructing
GPR models.

6.2. The Individual Standardized (ISE) Errors. We also calculated the ISE, equa-
tion (13) for the univariate and multivariate GPR models. Thus, we plotted the ISE to
investigate the performance of univariate and multivariate GPR models. Figure 3 presents
the ISE for the univariate and multivariate GPR models of the output 1, equation (14).
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Figure 3. The ISE for the univariate and multivariate GPR models of
the output 1, equation (14). The univariate GPR model produces Large
values of ISE.

In Figure 3, the ISE values for the univariate GPR model of the output 1, equation (14)
are presented in the left plot. It can be seen that there are several large values of ISE. The
ISE values for the multivariate GPR model of the output 1, equation (14) are presented
in the right plot. It can be shown that all the ISE lie in the bound seen in the plot.

Figure 4 shows the ISE for the univariate and multivariate GPR models of output 2,
equation (15). The ISE values for the univariate GPR model of the output 2, equation
(15) are presented in the left plot. It is indicated that although most of the ISE are small,
there are several large ISE that lie outside the bounds. The ISE for the univariate GPR
model of output 2, equation (15) are presented in the right plot. It can be shown that all
the ISE are within the bound.

It can be concluded that the GPR model may not perform well when modeling it
separately using univariate models. The performance GPR model that is modeled using
multivariate models can perform better as they account for the correlation between the
different outputs.
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Figure 4. The ISE the univariate and multivariate GPR models of the
output 2, equation (15). There are many large ISE for the univariate GPR
model.

7. Conclusion

We have developed measures for quantifying uncertainty and investigating the perfor-
mance of the multivariate GPR models as surrogates for multiple computer codes. Our
measure is able to check if the multivariate normal assumption is reasonable for con-
structing multivariate GPR models or not. We have also compared the performance of
multivariate GPR models with that of univariate GPR models. We have found that con-
structing multivariate GPR models for multiple CC is more efficient than constructing
separate univariate GPR models as the multivariate GPR models are able to quantify
the uncertainty of the CC outputs as they consider the correlation between the different
outputs.
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