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HOMOMORPHIC PRODUCT OF SOFT DIRECTED GRAPHS

J. JOSE1, B. GEORGE2∗, R. K. THUMBAKARA3, §

Abstract. A graph with directed edges is referred to be directed graph. It is possible
to study and resolve problems with social connections, shortest paths, electrical circuits,
etc. using directed graphs. D. Molodtsov proposed soft set theory as a mathematical
framework for handling uncertain data. Nowadays, a lot of people employ soft set theory
to solve decision-making problems. We present soft directed graphs by extending the
notion of soft set to directed graphs. A parameterized perspective for directed graphs is
provided by soft directed graphs. In this study, we look at various characteristics of soft
directed graphs’ homomorphic product and restricted homomorphic product.
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1. Introduction

Soft set theory was proposed by D. Molodtsov as a mathematical framework for dealing
with uncertain data. Many academics are now applying soft set theory in decision-making
problems. Authors like R. Biswas, P. K. Maji and A. R. Roy [10], [11] have delved deeper
into the idea of soft sets and applied it to various decision-making situations. In 2014,
R. K. Thumbakara and B. George [16] introduced the concept of soft graphs to provide
a parameterized point of view for graphs. M. Akram and S. Nawas [1] updated R. K.
Thumbakara and B. George’s notion of the soft graph in 2015. They [2] also defined many
varieties of soft graphs, such as regular soft graphs, soft trees, and soft bridges, as well
as the notions of soft cut vertex, soft cycle and so on. More contributions to connected
soft graphs came from J. D. Thenge, R. S. Jain and B. S. Reddy[13]. They [14] looked at
the ideas of a soft graph’s radius, diameter, and centre, as well as the concept of degree.
They also addressed the notions of incidence and adjacency matrices of a soft graph in
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2020 [15]. B. George, R. K. Thumbakara and J. Jose [3],[5], [17] discussed some soft graph
operations and introduced notions such as soft semigraphs and soft hypergraphs.

Directed graphs can be used to analyze and resolve problems with electrical circuits,
project timelines, shortest routes, social links, and many other issues. J. Jose, B. George
and R.K. Thumbakara [9] introduced the notion of the soft directed graph by applying the
concepts of soft set in a directed graph. They also introduced the concepts of indegree,
outdegree, degree, adjacency matrix and incidence matrix in soft directed graphs and
investigated their properties. The directed graph product [7] is a binary operation on
directed graphs. It is a process that takes two directed graphs, D1 = (V1, A1) and D2 =
(V2, A2) and creates a directed graph D having the characteristics listed below: The
vertex set of D is the Cartesian product V1 × V2. Two vertices (v1, v2) and (v′1, v

′
2) of D

are joined by an arc, if and only if some conditions about v1, v
′
1 in D1 and/or v2, v

′
2 in

D2 are satisfied. Analogous to the definitions of directed graph products, we can define
product operations in soft directed graphs. In [9], some product operations of soft directed
graphs like the cartesian product, restricted cartesian product, lexicographic product and
restricted lexicographic product are studied. B. George, J. Jose and R. K. Thumbakara [4]
also introduced modular product and restricted modular product in soft directed graphs
and investigated their properties. In this work, we introduce and study some of the features
of homomorphic product and restricted homomorphic product of soft directed graphs.

2. Preliminaries

2.1. Directed Graphs. [6],[8] A directed graph or digraph D∗ consists of a non-empty
finite set V of elements called vertices and a finite set A of ordered pairs of distinct vertices
called arcs. We often write D∗ = (V,A) to represent a directed graph. The number of
vertices and arcs in a directed graph D∗ are called order and size respectively. The first
vertex u of an arc (u, v) is called its tail and the second vertex v is called its head. If (u, v)
is an arc then v is adjacent from u and u is adjacent to v. A vertex u is incident to an
arc a if u is the head or tail of a. A directed graph D∗∗ = (U,F ) is called a subdigraph of
D∗ = (V,A) if U ⊆ V and F ⊆ A. The in-degree of a vertex v denoted by ideg v is the
number of vertices in D∗ from which v is adjacent and out-degree of v denoted by odeg v
is the number of vertices in D∗ to which v is adjacent. The sum ideg v + odeg v is called
the degree of the vertex v and is denoted by deg v. In a directed graph D∗ = (V,A),∑

v∈V ideg(v) =
∑

v∈V odeg(v) =Number of arcs in D∗ and
∑

v∈V deg(v) = 2(Number of
arcs in D∗).

Some directed graph products can be defined in a manner that is similar to how the
corresponding graph products are defined [7]. Let D∗

1 = (V1, A1) and D∗
2 = (V2, A2) be

two directed graphs. Their homomorphic product D∗
1 ⋉D∗

2 is a directed graph with vertex
set V (D∗

1 ⋉ D∗
2) = V1 × V2 and arc set A(D∗

1 ⋉ D∗
2) where ((v1, v

′
1), (v2, v

′
2)) is an arc in

D∗
1 ⋉D∗

2 if and only if

(1) v1 = v2 or
(2) (v1, v2) is an arc in D∗

1 and (v′1, v
′
2) is not an arc in D∗

2.

2.2. Soft Set. [12] Let R be a set of parameters and U be an initial universe set. Then
a pair (F,R) is called a soft set (over U) if and only F is a mapping of R into the power
set of U . That is, F : R → P(V ).

2.3. Soft Directed Graphs. [9] Let D∗ = (V,A) be a directed graph having vertex
set V and arc set A and let P be a non-empty set. Let a subset R of P × V be an
arbitrary relation from P to V . Define a mapping J : P → P(V ) by J(x) = {u ∈ V |xRu}
where P(V ) denotes the powerset of V . Define another mapping L : P → P(A) by L(x) =
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{(u, v) ∈ A|{u, v} ⊆ J(x)} where P(A) denotes the powerset of E. Then D = (D∗, J, L, P )
is called a soft directed graph if it satisfies the following conditions:

(1) D∗ = (V,A) is a directed graph having vertex set V and arc set A,
(2) P is a nonempty set of parameters,
(3) (J, P ) is a soft set over the vertex set V ,
(4) (L,P ) is a soft set over the arc set A,
(5) (J(x), L(x)) is a subdigraph of D∗ for all x ∈ P .

If we represent (J(x), L(x)) by M(x) then the soft directed graph D is also given by
{M(x) : x ∈ P}. Then M(x) corresponding to a parameter x in P is called a directed part
or simply dipart of the soft directed graph D.

Let D = (D∗, J, L, P ) be a soft directed graph and let M(x) be a dipart of D for
some x ∈ P . Let v be a vertex of M(x). Then dipart indegree of v in M(x) denoted
by ideg v[M(x)] is defined as the number of vertices of M(x) from which v is adjacent.
That is, ideg v[M(x)] is the number of arcs of M(x) that have v as its head. Similarly,
dipart outdegree of v in M(x) denoted by odeg v[M(x)] is defined as the number of
vertices of M(x) to which v is adjacent. That is, odeg v[M(x)] is the number of arcs
of M(x) that have v as its tail. The dipart degree of v in M(x) is defined as the sum,
ideg v[M(x)] + odeg v[M(x)] and is denoted by deg v[M(x)].

3. Homomorphic Product of Soft Directed Graphs

Definition 3.1. Let D∗
1 = (V1, A1) and D∗

2 = (V2, A2) be two directed graphs and D1 =
(D∗

1, J1, L1, P1) = {M1(x) : x ∈ P1} and D2 = (D∗
2, J2, L2, P2) = {M2(x) : x ∈ P2} be two

soft directed graphs of the directed graphs D∗
1 and D∗

2 respectively. Then the homomorphic
product of the soft directed graphs D1 and D2, which is represented by D1 ⋉D2 is defined
as D1 ⋉ D2 = {M1(x1) ⋉ M2(x2) : (x1, x2) ∈ P1 × P2}. Here M1(x1) ⋉ M2(x2) denotes
the homomorphic product of the diparts M1(x) of D1 and M2(y) of D2 which is defined as
follows: M1(x1)⋉M2(x2) is a directed graph having set of vertices V (M1(x1)⋉M2(x2)) =
J1(x1)× J2(x2) and set of arcs A(M1(x1)⋉M2(x2)), where ((v1, v

′
1), (v2, v

′
2)) is an arc in

M1(x1)⋉M2(x2) if and only if

(1) v1 = v2 or
(2) (v1, v2) is an arc in M1(x1) and (v′1, v

′
2) is not an arc in M2(x2).

Example 3.1. Let D∗
1 = (V1, A1) be a directed graph which is shown in Fig. 1. Let

P1 = {v6, v3} ⊆ V1 be a set of parameters. Define a mapping J1 : P1 → P(V1) by
J1(x) = {u ∈ V1 | u = x or u is adjacent from x}, ∀x ∈ P1. That is, J1(v6) = {v2, v4, v6}
and J1(v3) = {v1, v3, v5}. Here (J1, P1) is a soft set over V1. Define another mapping
L1 : P1 → P(A1) by L1(x) = {(u, v) ∈ A1 | {u, v} ⊆ J1(x)},∀x ∈ P1. That is,
L1(v6) = {(v2, v4), (v6, v2), (v6, v4)} and L1(v3) = {(v3, v1), (v3, v5)}. Here, (L1, P1) is
a soft set over A1. Then M1(v6) = (J1(v6), L1(v6)) and M1(v3) = (J1(v3), L1(v3)) are
subdigraphs of D∗

1 as shown in Fig. 2. Therefore D1 = {M1(v6),M1(v3)} is a soft directed
graph of D∗

1.
Let D∗

2 = (V2, A2) be a directed graph which is shown in Fig. 3. Consider the parameter set
P2 = {u4} ⊆ V2. Define a mapping J2 : P2 → P(V2) by J2(x) = {u ∈ V2 | u = x or u is ad-
jacent from x},∀x ∈ P2. That is, J2(u4) = {u1, u4}. Here, (J2, P2) is a soft set over
V2. Define another mapping L2 : P2 → P(A2) by L2(x) = {(u, v) ∈ A2 | {u, v} ⊆
J2(x)},∀x ∈ P2. That is, L2(u4) = {(u4, u1)}. Here, (L2, P2) is a soft set over A2.
Then, M2(u4) = (J2(u4), L2(u4)) is a subdigraph of D∗

2 as shown in Fig. 4. Therefore,
D2 = {M2(u4)} is a soft directed graph of D∗

2.
Then the homomorphic product of these two soft directed graphs D1 and D2 is given by
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Figure 1. Directed Graph D∗
1 = (V1, A1)

Figure 2. Soft Directed Graph D1 = {M1(v6),M1(v3)}

D = D1 ⋉D2 = {M1(v6)⋉M2(u4),M1(v3)⋉M2(u4)} and is shown in Fig. 5.

Theorem 3.1. Let D∗
1 = (V1, A1) and D∗

2 = (V2, A2) be two directed graphs and D1 and
D2 be two soft directed graphs of D∗

1 and D∗
2 respectively. Then the homomorphic product

of D1 and D2, which is represented by D1 ⋉D2 is a soft directed graph of D∗
1 ⋉D∗

2.

Proof. Let D1 = (D∗
1, J1, L1, P1) = {M1(x) : x ∈ P1} be a soft directed graph of D∗

1 =
(V1, A1) and D2 = (D∗

2, J2, L2, P2) = {M2(x) : x ∈ P2} be a soft directed graph of
D∗

2 = (V2, A2). Then the homomorphic productD1⋉D2 is defined asD1⋉D2 = {M1(x1)⋉
M2(x2) : (x1, x2) ∈ P1 × P2}. Here M1(x1) ⋉M2(x2) denotes the homomorphic product
of the diparts M1(x) of D1 and M2(y) of D2 which is defined as follows: M1(x1)⋉M2(x2)
is a directed graph having set of vertices V (M1(x1)⋉M2(x2)) = J1(x1)× J2(x2) and set
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Figure 3. Directed Graph D∗
2 = (V2, A2)

Figure 4. Soft Directed Graph D2 = {M2(u4)}

of arcs A(M1(x1)⋉M2(x2)), where ((v1, v
′
1), (v2, v

′
2)) is an arc in M1(x1)⋉M2(x2) if and

only if

(1) v1 = v2 or
(2) (v1, v2) is an arc in M1(x1) and (v′1, v

′
2) is not an arc in M2(x2).

The homomorphic product D∗
1 ⋉D∗

2 of the two directed graphs D1 and D2 is a directed
graph having set of vertices V (D∗

1 ⋉ D∗
2) = V1 × V2 and set of arcs A(D∗

1 ⋉ D∗
2) where

((v1, v
′
1), (v2, v

′
2)) is an arc in D∗

1 ⋉D∗
2 if and only if

(1) v1 = v2 or
(2) (v1, v2) is an arc in D∗

1 and (v′1, v
′
2) is not an arc in D∗

2.

Let the parameter set be PD1⋉D2 = P1 × P2. Define a mapping JD1⋉D2 from PD1⋉D2

to P[V (D∗
1 ⋉ D∗

2)] by JD1⋉D2(x1, x2) = J1(x1) × J2(x2), ∀(x1, x2) ∈ P1 × P2 where
P[V (D∗

1 ⋉ D∗
2)] represents the power set of V (D∗

1 ⋉ D∗
2). Then (JD1⋉D2 , PD1⋉D2) is

a soft set over V (D∗
1 ⋉ D∗

2). Also, define another mapping LD1⋉D2 from PD1⋉D2 to
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Figure 5. D = D1 ⋉D2 = {M1(v6)⋉M2(u4),M1(v3)⋉M2(u4)}

P[A(D∗
1 ⋉ D∗

2)] by LD1⋉D2(x1, x2) = {((u, v), (y, z)) ∈ A(D∗
1 ⋉ D∗

2) | {(u, v), (y, z)} ∈
JD1⋉D2(x1, x2)}, ∀(x1, x2) ∈ P1 × P2, where P[A(D∗

1 ⋉ D∗
2)] represents the power set of

A(D∗
1 ⋉ D∗

2). Then (LD1⋉D2 , PD1⋉D2) is a soft set over A(D∗
1 ⋉ D∗

2). Also, if we de-
note (JD1⋉D2(x1, x2), LD1⋉D2(x1, x2)) by MD1⋉D2(x1, x2), then MD1⋉D2(x1, x2) is a sub-
digraph of D∗

1 ⋉ D∗
2,∀(x1, x2) ∈ P1 × P2, since J1(x1) × J2(x2) ⊆ V1 × V2 and any arc

in LD1⋉D2(x1, x2) is also an arc in A(D∗
1 ⋉ D∗

2). Then D1 ⋉ D2 can be represented by
the 4-tuple (D∗

1 ⋉D∗
2, JD1⋉D2 , LD1⋉D2 , PD1⋉D2) and also by {MD1⋉D2(x1, x2) : (x1, x2) ∈

P1×P2} and D1⋉D2 is a soft directed graph of D∗
1⋉D∗

2 since the conditions listed below
are met:

(1) D∗
1 ⋉D∗

2 = (V (D∗
1 ⋉D∗

2), A(D
∗
1 ⋉D∗

2)) is a directed graph having set of vertices
V (D∗

1 ⋉D∗
2) and set of arcs A(D∗

1 ⋉D∗
2),

(2) PD1⋉D2 = P1 × P2 ̸= ϕ is the set of parameters,
(3) (JD1⋉D2 , PD1⋉D2) is a soft set over V (D∗

1 ⋉D∗
2),

(4) (LD1⋉D2 , PD1⋉D2) is a soft set over A(D∗
1 ⋉D∗

2),
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(5) MD1⋉D2(x1, x2) = (JD1⋉D2(x1, x2), LD1⋉D2(x1, x2)) is a subdigraph of D∗
1 ⋉D∗

2,
∀(x1, x2) ∈ PD1⋉D2 = P1 × P2.

□

Remark 3.1. In counting the number of vertices and arcs in various soft directed graph
products, we count them as many times they appear in different diparts of the product.

Theorem 3.2. Let D∗
1 = (V1, A1) and D∗

2 = (V2, A2) be two directed graphs and D1 =
(D∗

1, J1, L1, P1) and D2 = (D∗
2, J2, L2, P2) be two soft directed graphs of D∗

1 and D∗
2 re-

spectively. Then the homomorphic product of D1 and D2, which is represented by D1 ⋉
D2 contains

∑
(xi,xj)∈P1×P2

|J1(xi)||J2(xj)| vertices and
∑

(xi,xj)∈P1×P2
(2|J1(xi)|

(|J2(xj)|
2

)
+

|L1(xi)|[|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]) arcs, where
(|J2(xj)|

2

)
denotes the number of dif-

ferent combinations of vertices in |J2(xj)| taking 2 at a time.

Proof. By definition, D1⋉D2 = {M1(x1)⋉M2(x2) : (x1, x2) ∈ P1×P2}. The parameter set
of D1⋉D2 is P1×P2. Consider the dipartM1(xi)⋉M2(xj) of D1⋉D2 corresponding to the
parameter (xi, xj) ∈ P1 × P2. The vertex set of M1(xi)⋉M2(xj) is J1(xi)× J2(xj) which
contains |J1(xi)||J2(xj)| elements. This is a true statement for all diparts of D1 ⋉ D2.
Therefore total count of vertices in D1 ⋉ D2 is

∑
(xi,xj)∈P1×P2

|J1(xi)||J2(xj)|. Also we

know, ((vq, vr), (vs, vt)) is an arc in M1(xi)⋉M2(xj) if and only if

(1) vq = vs or
(2) (vq, vs) is an arc in M1(xi) and (vr, vt) is not an arc in M2(xj).

Now, each arc in M1(xi) ⋉M2(xj) was made by just one of these two requirements and
both of them can not be true at the same time. So to get the total count of arcs in
M1(xi) ⋉ M2(xj), we add the number of arcs generated by each condition. Consider
the first condition for adjacency, i.e.,vq = vs. Let v be any vertex in M1(xi). The
dipart M2(xj) contains |J2(xj)| vertices. We can choose 2 different vertices v′ and v′′

from M2(xj) in
(|J2(xj)|

2

)
different ways. Corresponding to each choice we get two arcs

((v, v′), (v, v′′)) and ((v, v′′), (v, v′)) in M1(xi) ⋉M2(xj). Like v, there are totally |J1(xi)|
vertices in M1(xi). Hence, the first condition of adjacency gives 2|J1(xi)|

(|J2(xj)|
2

)
arcs in

M1(xi)⋉M2(xj). Now consider the second condition for adjacency, i.e., (vq, vs) is an arc
in M1(xi) and (vr, vt) is not an arc in M2(xj). We can choose two different vertices vq
and vs in M1(xi) such that (vq, vs) is an arc in M1(xi) in |L1(xi)| different ways. Sim-
ilarly we can choose two different vertices vr and vt in M2(xj) such that (vr, vt) is not
an arc in M2(xj) in (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) different ways. Let vq and vs be
two vertices in M1(xi) such that (vq, vs) is an arc in M1(xi) and let vr and vt be two
vertices in M2(xj) such that (vr, vt) is not an arc in M2(xj). From this we get an arc
((vq, vr), (vs, vt)) in M1(xi) ⋉ M2(xj). Hence totally the second condition for adjacency
gives |L1(xi)| (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) arcs in M1(xi)⋉M2(xj). Hence, the total

count of arcs in M1(xi) ⋉ M2(xj) is 2|J1(xi)|
(|J2(xj)|

2

)
+ |L1(xi)|(|J2(xj)|(|J2(xj)| − 1) −

|L2(xj)|). This is a true statement for all diparts of D1 ⋉ D2. Therefore, total count of
arcs in D1 ⋉D2 is∑

(xi,xj)∈P1×P2

(
2|J1(xi)|

(
|J2(xj)|

2

)
+ |L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]

)

. □
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Corollary 3.1. Let D∗
1 = (V1, A1) and D∗

2 = (V2, A2) be two directed graphs and D1 =
(D∗

1, J1, L1, P1) and D2 = (D∗
2, J2, L2, P2) be two soft directed graphs of D∗

1 and D∗
2 respec-

tively. Then

(i)
∑

(xi,xj)∈P1×P2

∑
(u,v)∈JD1⋉D2

(xi,xj)

ideg(u, v)[MD1⋉D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

∑
(u,v)∈JD1⋉D2

(xi,xj)

odeg(u, v)[MD1⋉D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(
2|J1(xi)|

(
|J2(xj)|

2

)
+ |L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]

)

(ii)
∑

(xi,xj)∈P1×P2

∑
(u,v)∈JD1⋉D2

(xi,xj)

deg(u, v)[MD1⋉D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(
4|J1(xi)|

(
|J2(xj)|

2

)
+ 2|L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]

)
,

where ideg(u, v)[MD1⋉D2(xi, xj)], odeg(u, v)[MD1⋉D2(xi, xj)] and deg(u, v)[MD1⋉D2

(xi, xj)] denote the dipart in-degree, dipart out-degree and dipart degree respectively, of the
vertex (u, v), in the dipart MD1⋉D2(xi, xj) of D1 ⋉D2.

Proof. (i) Consider any dipart MD1⋉D2(xi, xj) = (JD1⋉D2(xi, xj), LD1⋉D2(xi, xj)) of D1⋉
D2 which is given by M1(xi) × M2(xj). By theorem 3.2, we have number of arcs in

M1(xi)×M2(xj) is 2|J1(xi)|
(|J2(xj)|

2

)
+ |L1(xi)|[|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|].

Since the dipart MD1⋉D2(xi, xj) is a directed graph having

2|J1(xi)|
(|J2(xj)|

2

)
+ |L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|] arcs, we have∑

(u,v)∈JD1⋉D2
(xi,xj)

ideg(u, v)[MD1⋉D2(xi, xj)] =

∑
(u,v)∈JD1⋉D2

(xi,xj)

odeg(u, v)[MD1⋉D2(xi, xj)] =

(
2|J1(xi)|

(
|J2(xj)|

2

)
+ |L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]

)
,

since each arc in MD1⋉D2(xi, xj) contributes 1 each to the sums∑
(u,v)∈JD1⋉D2

(xi,xj)
ideg(u, v)[MD1⋉D2(xi, xj)] and∑

(u,v)∈JD1⋉D2
(xi,xj)

odeg(u, v)[MD1⋉D2(xi, xj)].

This is true for all the diparts MD1⋉D2(xi, xj) of D1 ⋉D2. Hence,∑
(xi,xj)∈P1×P2

∑
(u,v)∈JD1⋉D2

(xi,xj)

ideg(u, v)[MD1⋉D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

∑
(u,v)∈JD1⋉D2

(xi,xj)

odeg(u, v)[MD1⋉D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(
2|J1(xi)|

(
|J2(xj)|

2

)
+ |L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]

)
.
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(ii) Since deg(u, v)[MD1⋉D2(xi, xj)] = ideg(u, v)[MD1⋉D2(xi, xj)] +
odeg(u, v)[MD1⋉D2(xi, xj)] and by part (i) of this theorem we have,∑

(xi,xj)∈P1×P2

∑
(u,v)∈JD1⋉D2

(xi,xj)

deg(u, v)[MD1⋉D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(
4|J1(xi)|

(
|J2(xj)|

2

)
+ 2|L1(xi)| [|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|]

)
.

□

4. Restricted Homomorphic Product of Soft Directed Graphs

Definition 4.1. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) = {M1(x) :
x ∈ P1} and D2 = (D∗, J2, L2, P2) = {M2(x) : x ∈ P2} be two soft directed graphs of
D∗ such that P1 ∩ P2 ̸= ϕ. Then the restricted homomorphic product of D1 and D2,
which is denoted by D1 ⋇ D2 is defined as D1 ⋇ D2 = {M1(x) ⋉ M2(x) : x ∈ P1 ∩ P2}.
Here M1(x) ⋉ M2(x) denotes the homomorphic product of the diparts M1(x) of D1 and
M2(x) of D2 which is defined as follows: M1(x) ⋉ M2(x) is a directed graph having set
of vertices V (M1(x)⋉M2(x)) = J1(x)× J2(x) and set of arcs A(M1(x)⋉M2(x)), where
((v1, v

′
1), (v2, v

′
2)) is an arc in M1(x)⋉M2(x) if and only if

(1) v1 = v2 or
(2) (v1, v2) is an arc in M1(x) and (v′1, v

′
2) is not an arc in M2(x).

Example 4.1. Let D∗ = (V,A) be a directed graph which is shown in Fig. 6. Let

Figure 6. Directed Graph D∗ = (V,A)

P1 = {v2, v6} ⊆ V be a set of parameters. Define a mapping J1 : P1 → P(V ) by
J1(x) = {u ∈ V | u = x or u is adjacent from x or u is adjacent to x}, ∀x ∈ P1.
That is, J1(v2) = {v1, v2, v3, v4} and J1(v6) = {v5, v6, v7, v8, v9}. Here (J1, P1) is a soft set
over V . Define another mapping L1 : P1 → P(A) by L1(x) = {(u, v) ∈ A | {u, v} ⊆
J1(x)}, ∀x ∈ P1. That is, L1(v2) = {(v2, v1), (v2, v3), (v3, v4), (v4, v2)} and L1(v6) =
{(v6, v5), (v6, v7), (v6, v9), (v5, v9), (v9, v5), (v9, v8), (v8, v6), (v9, v7)}. Here, (L1, P1) is a soft
set over A. Then M1(v2) = (J1(v2), L1(v2)) and M1(v6) = (J1(v6), L1(v6)) are subdigraphs
of D∗ as shown in Fig. 7. Therefore D1 = {M1(v2),M1(v6)} is a soft directed graph of D∗.



1414 TWMS J. APP. AND ENG. MATH. V.14, N.4, 2024

Figure 7. Soft Directed Graph D1 = {M1(v2),M1(v6)}

Consider another parameter set P2 = {v2, v9} ⊆ V . Define a mapping J2 : P2 → P(V ) by
J2(x) = {u ∈ V | u = x or u is adjacent from x}, ∀x ∈ P2. That is, J2(v2) = {v1, v2, v3}
and J2(v9) = {v5, v7, v8, v9}. Here, (J2, P2) is a soft set over V . Define another mapping
L2 : P2 → P(A) by L2(x) = {(u, v) ∈ A | {u, v} ⊆ J2(x)},∀x ∈ P2. That is, L2(v2) =
{(v2, v1), (v2, v3)} and L2(v9) = {(v9, v5), (v5, v9), (v9, v8), (v9, v7)}. Here, (L2, P2) is a
soft set over A. Then, M2(v2) = (J2(v2), L2(v2)) and M2(v9) = (J2(v9), L2(v9)) are sub-
digraphs of D∗ as shown in Fig. 8. Therefore, D2 = {M2(v2),M2(v9)} is a soft directed
graph of D∗. Then the restricted homomorphic product of these two soft directed graphs

Figure 8. Soft Directed Graph D2 = {M2(v2),M2(v9)}
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D1 and D2 is given by D = D1 ⋇D2 = {M1(v2)⋉M2(v2)} and is shown in Fig. 9.

Figure 9. D = D1 ⋇D2 = {M1(v2)⋉M2(v2)}

Theorem 4.1. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) = {M1(x) :
x ∈ P1} and D2 = (D∗, J2, L2, P2) = {M2(x) : x ∈ P2} be two soft directed graphs of D∗

such that P1 ∩ P2 ̸= ϕ. Then the restricted homomorphic product of D1 and D2, which is
represented by D1 ⋇D2 is a soft directed graph of D∗ ⋉D∗.

Proof. Let D1 = (D∗, J1, L1, P1) = {M1(x) : x ∈ P1} and D2 = (D∗, J2, L2, P2) =
{M2(x) : x ∈ P2} be soft directed graphs of D∗ = (V,A) such that P1 ∩ P2 ̸= ϕ. Then the
restricted homomorphic product D1 ⋇D2 is defined as D1 ⋇D2 = {M1(x)⋉M2(x) : x ∈
P1 ∩P2}. Here M1(x)⋉M2(x) denotes the homomorphic product of the diparts M1(x) of
D1 and M2(x) of D2 which is defined as follows: M1(x)⋉M2(x) is a directed graph having
set of vertices V (M1(x)⋉M2(x)) = J1(x)×J2(x) and set of arcs A(M1(x)⋉M2(x)), where
((v1, v

′
1), (v2, v

′
2)) is an arc in M1(x)⋉M2(x) if and only if

(1) v1 = v2 or
(2) (v1, v2) is an arc in M1(x) and (v′1, v

′
2) is not an arc in M2(x).

The homomorphic productD∗⋉D∗ is a directed graph having set of vertices V (D∗⋉D∗) =
V × V and set of arcs A(D∗ ⋉D∗), where ((v1, v

′
1), (v2, v

′
2)) is an arc in D∗ ⋉D∗ if and

only if



1416 TWMS J. APP. AND ENG. MATH. V.14, N.4, 2024

(1) v1 = v2 or
(2) (v1, v2) is an arc in D∗ and (v′1, v

′
2) is not an arc in D∗.

Let the parameter set be PD1⋇D2 = P1 ∩ P2. Define a mapping JD1⋇D2 from PD1⋇D2 to
P[V (D∗⋉D∗)] by JD1⋇D2(x) = J1(x)×J2(x),∀x ∈ P1∩P2 where P[V (D∗⋉D∗)] represents
the power set of V (D∗ ⋉ D∗). Then (JD1⋇D2 , PD1⋇D2) is a soft set over V (D∗ ⋉ D∗).
Also define another mapping LD1⋇D2 from PD1⋇D2 to P[A(D∗ ⋉ D∗)] by LD1⋇D2(x) =
{((u, v), (y, z)) ∈ A(D∗⋉D∗) | {(u, v), (y, z)} ∈ JD1⋇D2(x)}, ∀x ∈ P1∩P2, where P[A(D∗⋉
D∗)] represents the power set of A(D∗ ⋉ D∗). Then (LD1⋇D2 , PD1⋇D2) is a soft set over
A(D∗ ⋉D∗). Also if we denote (JD1⋇D2(x), LD1⋇D2(x)) by MD1⋇D2(x), then MD1⋇D2(x)
is a subdigraph of D∗ ⋉ D∗, ∀x ∈ P1 ∩ P2, since J1(x) × J2(x) ⊆ V × V and any arc in
LD1⋇D2(x) is also an arc in A(D∗⋉D∗). Then D1⋇D2 can be represented by the 4-tuple
(D∗ ⋉D∗, JD1⋇D2 , LD1⋇D2 , PD1⋇D2) and also by {MD1⋇D2(x) : x ∈ P1 ∩P2} and D1 ⋇D2

is a soft directed graph of D∗ ⋉D∗ since the conditions listed below are met:

(1) D∗ ⋉D∗ = (V (D∗ ⋉D∗), A(D∗ ⋉D∗)) is a directed graph having set of vertices
V (D∗ ⋉D∗) and set of arcs A(D∗ ⋉D∗),

(2) PD1⋇D2 = P1 ∩ P2 ̸= ϕ is the set of parameters,
(3) (JD1⋇D2 , PD1⋇D2) is a soft set over V (D∗ ⋉D∗),
(4) (LD1⋇D2 , PD1⋇D2) is a soft set over A(D∗ ⋉D∗),
(5) MD1⋇D2(x) = (JD1⋇D2(x), LD1⋇D2(x)) is a subdigraph of D∗⋉D∗,∀x ∈ PD1⋇D2 =

P1 ∩ P2.

□

Theorem 4.2. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) and
D2 = (D∗, J2, L2, P2) be two soft directed graphs of D∗ such that P1 ∩ P2 ̸= ϕ. Then
their restricted homomorphic product D1 ⋇ D2 contains

∑
x∈P1∩P2

|J1(x)||J2(x)| vertices
and

∑
x∈P1∩P2

(2|J1(x)|
(|J2(x)|

2

)
+ |L1(x)|[|J2(x)|(|J2(x)|−1)−|L2(x)|]) arcs, where

(|J2(x)|
2

)
denotes the number of different combinations of vertices in |J2(x)| taking 2 at a time.

Proof. By definition, D1 ⋇ D2 = {M1(x) ⋉ M2(x) : x ∈ P1 ∩ P2}. The parameter set of
D1 ⋇D2 is P1 ∩ P2. Consider the dipart M1(x)⋉M2(x) of D1 ⋇D2 corresponding to the
parameter x ∈ P1 ∩ P2. The vertex set of M1(x)⋉M2(x) is J1(x)× J2(x) which contains
|J1(x)||J2(x)| elements. This is a true statement for all diparts of D1⋇D2. Therefore total
count of vertices in D1 ⋇D2 is

∑
x∈P1∩P2

|J1(x)||J2(x)|. Also we know, ((vq, vr), (vs, vt))
is an arc in M1(x)⋉M2(x) if and only if

(1) vq = vs or
(2) (vq, vs) is an arc in M1(x) and (vr, vt) is not an arc in M2(x).

Now, each arc in M1(x)⋉M2(x) was made by just one of these two requirements and both
of them can not be true at the same time. So to get the total count of arcs inM1(x)⋉M2(x),
we add the number of arcs generated by each condition. Consider the first condition for
adjacency, i.e.,vq = vs. Let v be any vertex in M1(x). The dipart M2(x) contains |J2(x)|
vertices. We can choose 2 different vertices v′ and v′′ from M2(x) in

(|J2(x)|
2

)
different ways.

Corresponding to each choice we get 2 arcs ((v, v′), (v, v′′)) and ((v, v′′), (v, v′)) in M1(x)⋉
M2(x). Like v, there are totally |J1(x)| vertices in M1(x). Hence the first condition of

adjacency gives 2|J1(x)|
(|J2(x)|

2

)
arcs in M1(x)⋉M2(x). Now consider the second condition

for adjacency, i.e., (vq, vs) is an arc in M1(x) and (vr, vt) is not an arc in M2(x). We can
choose two different vertices vq and vs in M1(x) such that there is an arc (vq, vs) in M1(x),
in |L1(x)| different ways. Similarly we can choose two different vertices vr and vt in M2(x)
such that (vr, vt) is not an arc in M2(x) in (|J2(x)|(|J2(x)| − 1)− |L2(x)|) different ways.
Let vq and vs be two vertices in M1(x) such that (vq, vs) is an arc in M1(x) and let vr and
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vt be two vertices in M2(x) such that (vr, vt) is not an arc in M2(x). From this we get an
arc ((vq, vr), (vs, vt)) in M1(x)⋉M2(x). Hence totally the second condition for adjacency
gives |L1(x)| (|J2(x)|(|J2(x)| − 1)− |L2(x)|) arcs in M1(x)⋉M2(x). Hence, the total count

of arcs in M1(x)⋉M2(x) is 2|J1(x)|
(|J2(x)|

2

)
+ |L1(x)| (|J2(x)|(|J2(x)| − 1)− |L2(x)|). This

is a true statement for all diparts of D1 ⋇D2. Therefore total count of arcs in D1 ⋇D2 is∑
x∈P1∩P2

(
2|J1(x)|

(
|J2(x)|

2

)
+ |L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
,

. □

Corollary 4.1. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) and D2 =
(D∗, J2, L2, P2) be two soft directed graphs of D∗. Then

(i)
∑

x∈P1∩P2

∑
(u,v)∈JD1⋇D2

(x)

ideg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

∑
(u,v)∈JD1⋇D2

(x)

odeg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

(
2|J1(x)|

(
|J2(x)|

2

)
+ |L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)

(ii)
∑

x∈P1∩P2

∑
(u,v)∈JD1⋇D2

(x)

deg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

(
4|J1(x)|

(
|J2(x)|

2

)
+ 2|L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
,

where ideg(u, v)[MD1⋇D2(x)], odeg(u, v)[MD1⋇D2(x)] and deg(u, v)[MD1⋇D2(x)] denote the
dipart in-degree, dipart out-degree and dipart degree respectively, of the vertex (u, v), in
the dipart MD1⋇D2(x) of D1 ⋇D2.

Proof. (i) Consider any dipart MD1⋇D2(x) = (JD1⋇D2(x), LD1⋇D2(x)) of D1⋇D2 which is
given by M1(x)×M2(x). By theorem 4.2, we have number of arcs in M1(x)×M2(x) is∑

x∈P1∩P2

(
2|J1(x)|

(
|J2(x)|

2

)
+ |L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
.

Since the dipart MD1⋇D2(x) is a directed graph having∑
x∈P1∩P2

(
2|J1(x)|

(
|J2(x)|

2

)
+ |L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
arcs, we have∑

(u,v)∈JD1⋇D2
(x)

ideg(u, v)[MD1⋇D2(x)] =
∑

(u,v)∈JD1⋇D2
(x)

odeg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

(
2|J1(x)|

(
|J2(x)|

2

)
+ |L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
,
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since each arc in MD1⋇D2(x) contributes 1 each to the sums∑
(u,v)∈JD1⋇D2

(x) ideg(u, v)[MD1⋇D2(x)] and
∑

(u,v)∈JD1⋇D2
(x) odeg(u, v)[MD1⋇D2(x)].

This is true for all the diparts MD1⋇D2(x) of D1 ⋇D2. Hence,∑
x∈P1∩P2

∑
(u,v)∈JD1⋇D2

(x)

ideg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

∑
(u,v)∈JD1⋇D2

(x)

odeg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

(
2|J1(x)|

(
|J2(x)|

2

)
+ |L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
.

(ii) Since deg(u, v)[MD1⋇D2(x)] = ideg(u, v)[MD1⋇D2(x)] + odeg(u, v)[MD1⋇D2(x)] and by
part (i) of this theorem we have,∑

x∈P1∩P2

∑
(u,v)∈JD1⋇D2

(x)

deg(u, v)[MD1⋇D2(x)] =

∑
x∈P1∩P2

(
4|J1(x)|

(
|J2(x)|

2

)
+ 2|L1(x)| [|J2(x)|(|J2(x)| − 1)− |L2(x)|]

)
.

□

5. Conclusion

Soft directed graph generates a series of representations of a relationship given by a
directed graph, through parameterization. We introduced and explored the features of
homomorphic product and restricted homomorphic product of soft directed graphs, in
this study.
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