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FORK-DECOMPOSITION OF TOTAL GRAPH OF CORONA GRAPHS

A. SAMUEL ISSACRAJ1∗, J. PAULRAJ JOSEPH2, §

Abstract. Let G = (V,E) be a graph. Then the total graph of G is the graph T (G)
with vertex set V (G) ∪ E(G) in which two elements are adjacent if and only if they are
either adjacent or incident with each other. The corona of two graphs G1 and G2, is
the graph formed from one copy of G1 and |V (G1)| copies of G2 where the ith vertex of
G1 is adjacent to every vertex in the ith copy of G2 and is denoted by G1 ◦ G2. Fork
is a tree obtained by subdividing any edge of a star of size three exactly once. A de-
composition of G is a partition of E(G) into edge disjoint subgraphs. If all the members
of the partition are isomorphic to a subgraph H, then it is called a H-decomposition of
G. In this paper, we investigate the existence of necessary and sufficient conditions for
the fork-decomposition of Total graph of certain types of corona graphs which gives a
partial solution for the conjecture of Barat and Thomassen [4] for graphs of small edge
connectivity.
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1. Introduction

We consider only simple, finite and undirected graphs. Let Kn denote the complete
graph on n vertices and Kn be the null graph. Let Km,n denote the complete bipartite
graph with parts of sizes m and n. Let Pk denote the path of length k − 1 and Sk denote
the star of size k − 1. A vertex of degree 1 is called a pendant vertex and the vertex
adjacent to it is called a support. A tree is a connected acyclic graph.

Definition 1.1. The total graph of G, denoted by T (G) is defined as follows: the vertex
set of T (G) is V (G) ∪ E(G); two vertices x, y in the vertex set of T (G) are adjacent in
T (G) in case one of the following holds:

(1) x, y ∈ V (G) and x is adjacent to y in G.
(2) x, y ∈ E(G) and x is adjacent to y in G.
(3) x ∈ V (G), y ∈ E(G) and x is incident with y in G.
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Remark 1.1. The number of edges in the total graph is 2|E(G)|+ 1
2

∑
v∈V (G)

(d(v))2.

Definition 1.2. The corona of two graphs G1 and G2, is the graph G1 ◦G2 formed from
one copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1 is adjacent to every
vertex in the ith copy of G2.

Definition 1.3. [14] The Cartesian product of two graphs G and H, denoted by G�H, is
the graph whose vertex set is V (G)×V (H); two vertices (g, h) and (g′, h′) are adjacent in
G�H precisely if g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′.

Terms not defined here are used in the sense of Bondy and Murty [5].

2. Literature Review

A decomposition of a graph G is a collection C = {H1, H2, . . . ,Hr} of subgraphs of
G such that the set {E(H1), E(H2), . . . , E(Hr)} forms a partition of E(G). If each Hi is
isomorphic to a graph H, then C is called a H-decomposition of G. If H is a spanning
subgraph of G, then the decomposition is called a factorization.

There are lot of applications of decomposition of graphs which include group testings,
DNA library screening, scheduling problems, sharing scheme and synchronous optical
networks etc. In 1995, F.K. Hwang [15] gave necessary and sufficient condition for the
factorization of Krc into (r, c)-cliques which is isomorphic to Kr�Kc to identify positive
clones in genetic studies. This paper [15] explains how decomposition is used in DNA
library screening.

Decomposition of circulant balanced graphs using algorithmic and labeling approach
were studied by El. Mesady et. al. in [8, 9, 11] along with their applications. Cyclic
decomposition of balanced complete bipartite graphs using novel approach was studied in
[10]. Related studies were made in [12, 13].

Decomposition of arbitrary graphs into subgraphs of small size is assuming importance
in the literature. There are several studies on the isomorphic decomposition of graphs
into paths [19], cycles [2], trees [3], stars [20], sunlet [1] etc. The general problem of H-
decompositions was proved to be NP-complete for any H of size greater than 2 by Dor
and Tarsi [7].

Fork is a tree obtained by subdividing any edge of a star of size three exactly once. A
tree with degree sequence (1, 1, 1, 2, 3) is unique and is nothing but the fork defined above.
This graph was defined by Simone and Sassano in the name of chair graph in 1993, when
they studied the stability number of bull and chair-free graphs [6]. In 2014, Barat and
Gerbner [3] studied decomposition of 191-edge connected graphs which can be decomposed
into forks as a possible attempt to solve the following conjecture:
Conjecture 1. [4] For each tree T , there exists a natural number kT such that the
following holds: if G is a kT -edge-connected simple graph such that |E(T )| divides |E(G)|,
then G has a T-decomposition.

The edge-connectivity constants in the solved cases of Conjecture 1 are seemingly far
from best possible. There is very little known about lower bounds. This motivated us to
concentrate on total graph of certain corona graphs which are 2-connected.

If a graph G admits a H-decomposition, then |E(H)| divides |E(G)|. Since the size of
a fork is 4, for a fork-decomposition the obvious necessary condition is

|E(G)| ≡ 0 (mod 4) (1)
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Decomposition of complete bipartite graphs, complete graphs and corona graphs into
fork was studied in [18] by the authors. Also, they have studied the fork-decomposition
of cartesian product of graph and some total graphs in [16] and [17] respectively.

The following results are used in the subsequent section.

Theorem 2.1. [18] The complete bipartite graph Km,n is fork-decomposable if and only if
mn ≡ 0 (mod 4) except K2,4i+2, (i = 1, 2, ...).

Theorem 2.2. [18] The Complete graph Kn can be decomposed into forks if and only if
n = 8k or n = 8k + 1, for all k ≥ 1.

Theorem 2.3. [18] Cn ◦ Km is fork-decomposable if and only if m = 1 and n = 2k or
m = 3.

Theorem 2.4. [18] For m ≥ 3,

(1) Km ◦K1 is fork-decomposable if and only if m ≡ 0, 7 (mod 8).
(2) Km ◦K2 is fork-decomposable if and only if m ≡ 0, 5 (mod 8).

Theorem 2.5. [16] The graph P2�Cn is fork-decomposable if and only if n ≡ 0 (mod 4).

In this paper, we investigate the existence of decomposition of Total graph of certain
corona graphs into forks and obtain original results.

3. Total graph of corona of paths and null graphs

In this section, we investigate the necessary and sufficient conditions for the existence
of fork-decomposition of total graph of corona of paths Pn and null graphs Km.

We label the vertices of Pn ◦Km as follows:
Let V (Pn) = {u1, u2, . . . , un} and let Vi = {vi1, vi2, . . . , vim/1 ≤ i ≤ n} be the set of

pendant vertices adjacent to ui and

E(Pn ◦Km) = {ei, fij / ei = uiui+1 for 1 ≤ i ≤ n− 1 and

fij = uivij for 1 ≤ i ≤ n and 1 ≤ j ≤ m}.

Then,

V (T (Pn ◦Km)) = {ui/1 ≤ i ≤ n} ∪ {vij/1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{fij/1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {ei/1 ≤ i ≤ n− 1}.

and

E(T (Pn ◦Km)) = {uiei/1 ≤ i ≤ n− 1} ∪ {ei−1ui/1 ≤ i ≤ n− 1}
∪{uiui+1/1 ≤ i ≤ n− 1} ∪ {eiei+1/1 ≤ i ≤ n− 2}
∪{uifij/1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {uivij/1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{fijvij/1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {eifij/1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}
∪{fijfik/j 6= k, 1 ≤ i ≤ n, 1 ≤ j, k ≤ m}.

Remark 3.1. The number of edges in the total graph of Pn ◦ Km is 2(mn + n − 1) +
1
2(mn.12 + 2.(m + 1)2 + (n− 2).(m + 2)2) = 1

2(9mn + 8n− 4m + m2n− 10).

The following 4 lemmas are needed for proving the necessary and sufficient conditions
for the fork-decomposition of T (Pn ◦Km).

Lemma 3.1. T (Pn ◦K1) is fork-decomposable if and only if n ≡ 3 (mod 4).
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Proof. The number of edges in T (Pn ◦K1) is 1
2(9(1)(n) + 8n− 4(1) + 1(n)− 10) = 9n− 7.

If T (Pn ◦K1) is fork-decomposable, then 9n− 7 ≡ 0 (mod 4) which implies 8(n− 1) +
(n + 1) ≡ 0 (mod 4). Since 8(n − 1) ≡ 0 (mod 4), n + 1 ≡ 0 (mod 4) which implies
n ≡ 3 (mod 4).

Conversely, assume that n ≡ 3 (mod 4).
Then, a fork-decomposition of T (Pn ◦K1) is given by {ui−1v(i−1)1, ui−1f(i−1)1, ui−1ei−1,

ei−1ui}, {ei−1ei, ei−1fi1, ei−1f(i−1)1, f(i−1)1v(i−1)1}, {uiui−1, uiei, uifi1, fi1vi1}, {ui+1ui,
ui+1ei, ui+1v(i+1)1, uivi1}, {f(i+1)1 v(i+1)1, f(i+1)1ui+1, f(i+1)1ei, eifi1}, where i ≡ 2 (mod 4)
and {ei−1ei−2, ei−1f(i−1)1, ei−1ui−1, ui−1ui}, {uiei−1, uivi1, uiei, eifi1}, {fi1ui, fi1vi1,
fi1ei−1, ei−1ei}, {eiei+1, eif(i+1)1, eiui+1, ui+1ui} where i ≡ 0 (mod 4). Here the subscripts
are taken modulo n. �

Lemma 3.2. T (Pn ◦K2) is fork-decomposable if and only if n ≡ 3 (mod 4).

Proof. The number of edges in T (Pn ◦K2) is 1
2(18(n) + 8n− 8 + 4(n)− 10) = 15n− 9.

If T (Pn ◦K2) is fork-decomposable, then 15n− 9 ≡ 0 (mod 4) which implies 5n− 3 ≡
0 (mod 4). This can be written as 4(n−1)+(n+1) ≡ 0 (mod 4). Since 4(n−1) ≡ 0 (mod 4),
n + 1 ≡ 0 (mod 4) which implies n ≡ 3 (mod 4).

Conversely, assume that n ≡ 3 (mod 4).
If n ≥ 3, then, a fork-decomposition of T (P3◦K2) is given by {uivi2, uifi2, uivi1, vi1fi1},

{fi2vi2, fi2ei, fi2fi1, fi1ui}, {eiui, eif(i+1)2, eifi1, uiui+1} where i ≡ 1, 2 (mod 4) and
{eiui+1, eif(i+1)1 eiei+1, ei+1f(i+2)1}, {ui+2ei+1, ui+2v(i+2)1, ui+2f(i+2)2, f(i+2)2v(i+2)2},
{f(i+2)1v(i+2)1, f(i+2)1f(i+2)2, f(i+2)1ui+2, ui+2v(i+2)2} where i ≡ 1 (mod 4). Here the sub-
scripts are taken modulo n.

For n ≥ 4, the induced subgraph 〈{ui, ui+1, ui+2, ei, ei+1, fi1, fi2, f(i+1)1, f(i+1)2, f(i+2)1,
f(i+2)2, vi1, vi2, v(i+1)1, v(i+1)2, v(i+2)1, v(i+2)2}〉 where i ≡ 0 (mod 4) is isomorphic to

T (P3◦K2) which is fork - decomposable. Removing the above induced subgraphs, we get a
subgraph which is fork - decomposable as follows: {ei−1ei−2, ei−1f(i−1)1, ei−1ui−1, ui−1ui},
{ei−1ei, ei−1fi2, ei−1ui, uifi1}, {fi1ei, fi1fi2, fi1ei−1, ei−1f(i−1)2}, {fi2ui, fi2vi2, fi2ei,
eif(i+1)1}, {uiei, uivi2, uivi1, vi1fi1}, {eiei+1, eif(i+1)2, eiui+1, ui+1ui} where i ≡ 0 (mod 4)
and the subscripts are taken modulo n. �

Lemma 3.3. T (Pn ◦K5) is fork-decomposable if and only if n ≡ 1 (mod 4).

Proof. The number of edges in T (Pn ◦K5) is 1
2(45(n) + 8n− 20 + 25(n)− 10) = 39n− 15.

If T (Pn ◦ K5) is fork-decomposable, then 39n − 15 ≡ 0 (mod 4) which implies
8(5n − 2) − (n − 1) ≡ 0 (mod 4). Since 8(5n − 2) ≡ 0 (mod 4), n − 1 ≡ 0 (mod 4)
which implies n ≡ 1 (mod 4).

Conversely, assume that n ≡ 1 (mod 4).
Then, a fork-decomposition of T (Pn◦K5) is given by {fijvij , fijfi(j+1), fijfi(j+2), vijui}

where 1 ≤ i ≤ n and 1 ≤ j ≤ 5, {uiui−1, uiei, uiui+1, ui+1ei+1} where i ≡ 2 (mod 4),
{uiei, uiei−1, uiui−1, ui−1ei−2} where i ≡ 0 (mod 4), {uiui−1, uiei−1, uiei, eiui+1} where
i ≡ 5 (mod 4), {ei−1fi1, ei−1fi2, ei−1fi3, fi3ui}, {uifi1, uifi2, uifi4, fi4ei−1}, {eifi1, eifi2,
eifi5, fi5ui}, {eifi3, eifi4, eiei−1, ei−1fi5} where 2 ≤ i ≤ n−1, {u1f12, u1f13, u1f14, f14e1},
{e1u2, e1f13, e1u1, u1f11}, {e1f11, e1f12, e1f15, f15u1}, {unfn2, unfn3, unfn4, fn4en−1},
{en−1un−1, en−1fn3, en−1u5, u5fn1}, {en−1fn1, en−1fn2, en−1fn5, fn5u5}. �

Lemma 3.4. T (Pn ◦K6) is fork-decomposable if and only if n ≡ 1 (mod 4).

Proof. The number of edges in T (Pn ◦K6) is 1
2(98(n) + 8n− 24 + 36(n)− 10) = 49n− 17.
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If T (Pn ◦ K6) is fork-decomposable, then 49n − 17 ≡ 0 (mod 4) which implies
8(6n − 2) + (n − 1) ≡ 0 (mod 4). Since 8(6n − 2) ≡ 0 (mod 4), n − 1 ≡ 0 (mod 4)
which implies n ≡ 1 (mod 4).

Conversely, assume that n ≡ 1 (mod 4).
Then, a fork-decomposition of T (Pn◦K6) is given by {fijvij , fijfi(j+1), fijfi(j+2), vijui}

where 1 ≤ i ≤ n and 1 ≤ j ≤ 6, {ui−1ui−2, ui−1ei−2, ui−1ei−1, ei−1f(i−1)3}, {uiui−1, uiei−1,
uiei, eiui+1}, {eifi3, eiei+1, eiei−1, ei−1ei−2}, {ei+1f(i+1)3, ei+1ui+2, ei+1ui+1, ui+1ui}
where i ≡ 3 (mod 4), {eifi3, eiei−1, eiui, uiui−1} where i ≡ 5 (mod 4), {fi1ei−1, fi1ui,
fi1ei, ei−1fi3}, {fi2ei−1, fi2ui, fi2ei, uifi3}, {ei−1fi4, ei−1fi5, ei−1fi6, fi4fi1}, {eifi4, eifi5,
eifi6, fi6fi3}, {uifi4, uifi5, uifi6, fi5fi2} where 2 ≤ i ≤ n− 1, {e1f14, e1f15, e1f16, f16u1},
{f12u1, f12e1, f12f15, u1f11}, {f13u1, f13e1, f13f16, e1f11}, {u1e1, u1f15, u1f14, f14f11},
{en−1fn4, en−1fn5, en−1fn6, fn6un}, {fn2un, fn2en−1, fn2fn5, unfn1}, {fn3un, fn3en−1,
fn3fn6, en−1fn1}, {unen−1, unfn5, unfn4, fn4fn1}. �

Theorem 3.1. T (Pn ◦ Km) is fork-decomposable if and only if it satisfies any of the
following conditions:

(1) n ≡ 3 (mod 4) and m ≡ 1, 2 (mod 8).
(2) n ≡ 1 (mod 4) and m ≡ 5, 6 (mod 8).

Proof. Let V (Pn ◦Km) = {ui / 1 ≤ i ≤ n} ∪ {vij / 1 ≤ i ≤ n, 1 ≤ j ≤ m} where ui are
the support vertices and vij are the pendant vertices adjacent to corresponding ui.

E(Pn ◦Km) = {ei, fij / ei = uiui+1 for 1 ≤ i ≤ n− 1 and

fij = uivij for 1 ≤ i ≤ n and 1 ≤ j ≤ m}.
Then,

V (T (Pn ◦Km)) = {ui/1 ≤ i ≤ n} ∪ {vij/1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{fij/1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {ei/1 ≤ i ≤ n− 1}

and

E(T (Pn ◦Km)) = {uiei/1 ≤ i ≤ n− 1} ∪ {ei−1ui/1 ≤ i ≤ n− 1}
∪{uiui+1/1 ≤ i ≤ n− 1} ∪ {eiei+1/1 ≤ i ≤ n− 2}
∪{uifij/1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {uivij/1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{fijvij/1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {eifij/1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}
∪{fijfik/j 6= k, 1 ≤ i ≤ n, 1 ≤ j, k ≤ m}.

The number of edges in T (Pn ◦Km) is 1
2(9mn+8n−4m+m2n−10) which implies that

(9mn+8n−4m+m2n−10) ≡ 0 (mod 8). Hence, n((m+8)(m+1))−4m−10 ≡ 0 (mod 8).
Since 8n(m + 1) ≡ 0 (mod 8), nm(m + 1)− 4m− 10 ≡ 0 (mod 8).

Now assume that T (Pn ◦Km) is fork-decomposable.
Case 1. n ≡ 0 (mod 4).

Then n = 4a, where a is any arbitrary integer. Hence, 4am(m+1)−4m−10 ≡ 0 (mod 8).
Since m(m + 1) is even, 4am(m + 1)− 8 ≡ 0 (mod 8), then −4m− 2 ≡ 0 (mod 8), which
is not possible since m is an integer.
Case 2. n ≡ 1 (mod 4).

Then n = 4a+ 1, where a is any arbitrary integer. Here, (4a+ 1)m(m+ 1)− 4m− 10 ≡
0 (mod 8). This implies that, m(m + 1)− 4m− 10 ≡ 0 (mod 8), since m(m + 1) is even.
(m+ 2)(m− 5) ≡ 0 (mod 8). Then either m+ 2 ≡ 0 (mod 8) or m− 5 ≡ 0 (mod 8) which
implies that m ≡ 6 (mod 8) or m ≡ 5 (mod 8).
Case 3. n ≡ 2 (mod 4).
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Then n = 4a+ 2, where a is any arbitrary integer. Here, (4a+ 2)m(m+ 1)− 4m− 10 ≡
0 (mod 8). This implies that, 2m(m + 1) − 4m − 10 ≡ 0 (mod 8), since m(m + 1) is
even. Here m2 + m − 2m ≡ 5 (mod 4) which implies m(m − 1) ≡ 5 (mod 4) which is a
contradiction, since m(m− 1) is even.
Case 4. n ≡ 3 (mod 4).

Then n = 4a+ 3, where a is any arbitrary integer. Here, (4a+ 3)m(m+ 1)− 4m− 10 ≡
0 (mod 8). This implies that, 3m(m + 1)− 4m− 10 ≡ 0 (mod 8), since m(m + 1) is even.
Here m(3m − 1) − 10 ≡ 0 (mod 8) which implies m(3m − 1) ≡ 2 (mod 8). Then either
m ≡ 2 (mod 8) or 3m−1 ≡ 2 (mod 8) which implies that m ≡ 2 (mod 8) or m ≡ 1 (mod 8).

Now let us prove the converse part. Let G = Pn ◦Km.
Case 1. n ≡ 3 (mod 4) and m ≡ 1 (mod 8).

Let G1 = 〈{u1, u2, . . . , un, e1, e2, . . . , en−1, v1m, v2m, . . . , vnm, f1m, f2m, . . . , fnm}〉 be the
induced subgraph of G. Then, G1 is isomorphic to T (Pn ◦K1) which is fork-decomposable
by Lemma 3.1. Let G2 = 〈{(f1j , v1j), (f2j , v2j), . . . , (fnj , vnj) / 1 ≤ j ≤ m − 1}〉 be
the induced subgraph of G. Then, G2 is isomorphic to n copies of Km−1 ◦ K1. Since
m ≡ 1 (mod 8), G2 is fork-decomposable by Theorem 2.4.

Let G3 denote the collection of forks, {uivij , uivi(j+1), uifi( j+1
2

), fi( j+1
2

)ei / 1 ≤ i ≤ n−1,

j ≡ 1 (mod 2) and j < m}. Let G4 denote the collection of forks, {unvnj , unvn(j+1),
unfn( j+1

2
), fn( j+1

2
) / j ≡ 1 (mod 2) and j < m}.

Let H1 = G−
4⋃

i=1
Gi. Let G5 = 〈{u1, e1, f11, f12, . . . , f1m}〉 be the induced subgraph of

H1. The fork-decomposition of G5 is given by {〈f1wu1, f1we1, f1wf1m, f1mf1(w−m−1
2

)〉 / w =

k, k + 1, . . . , 2k − 2 where k = m+1
2 }. Also, let G6 = {un, en−1, fn1, fn2, . . . , fnm} be the

induced subgraph of H1. The fork-decomposition of G6 is given by {〈fnwun, fnwen−1,
fnwfnm, fnmfn(w−m−1

2
)〉 / w = k, k + 1, . . . , 2k − 2 where k = m+1

2 }.

Let H2 = G−
6⋃

i=1
Gi. Let G7 = 〈{ui, ei, fik, fi(k+1), . . . , fi(2k−2)} / k = m+1

2 and 2 ≤ i ≤

n − 1〉 be the induced subgraph of H2. Here G7 is isomorphic to n − 2 copies of K2,m−1
2

.

Let G8 = 〈{ei−1, fij} / 2 ≤ i ≤ n− 1. 1 ≤ j ≤ m〉 be the induced subgraph of H2 and it is
isomorphic to K2,m−1. Here the subgraphs G7 and G8 are fork-decomposable by Theorem
2.1, since m ≡ 1 (mod 8).

Thus, T (Pn ◦Km) =
8⋃

i=1
Gi is fork-decomposable.

Case 2. n ≡ 3 (mod 4) and m ≡ 2 (mod 8).
Let G1 = 〈{u1, u2, . . . , un, e1, e2, . . . , en−1, v1m, v2m, . . . , vnm, v1(m−1), v2(m−1), . . . ,

vn(m−1), f1m, f2m, . . . , fnm, f1(m−1), f2(m−1), . . . , fn(m−1)}〉 be the induced subgraph

of G. Then, G1 is isomorphic to T (Pn ◦K2) which is fork-decomposable by Lemma 3.2.
Let G2 = 〈{f1j} / 1 ≤ j ≤ m − 2〉 and G3 = 〈{fnj} / 1 ≤ j ≤ m − 2〉 be the induced
subgraphs of G. Then, the graphs G2 and G3 are isomorphic to two copies of Km−2, which
are fork-decomposable by Theorem 2.2. Let G4 = 〈{fij , vij} / 2 ≤ i ≤ n−1, 1 ≤ j ≤ m−2〉
be the induced subgraph of G. Then, G4 is isomorphic to n−2 copies of Km−2 ◦K1. Since
m ≡ 2 (mod 8), G4 is fork-decomposable by Theorem 2.4.

Let G5 denote the collection of forks {f1ju1, f1je1, f1jv1j , u1v1(m−j−1) / 1 ≤ j ≤
m−2}, {fnjun, fnjen−1, fnjvnj , unvn(m−j−1) / 1 ≤ j ≤ m−2}, {uivij , uivi(j+1), uifj( j+1

2
),

fj( j+1
2

)ei / 2 ≤ i ≤ n−1, j ≡ 1 (mod 2) and j < m−1}, {fi(m
2
+j)ui, fi(m

2
+j)ei, fi(m

2
+j)ei−1,

ei−1fi(m−2
2
−j) / 2 ≤ i ≤ n− 1, 0 ≤ j ≤ m−4

2 }.
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Let G6 = G −
5⋃

i=1
Gi. Then, G6 = 〈{fi1, fi2, . . . , fim} / 1 ≤ i ≤ n〉 is isomorphic to n

copies of K2,m−2. Since m ≡ 2 (mod 8), G6 is fork-decomposable by Theorem 2.1.

Thus, T (Pn ◦Km) =
6⋃

i=1
Gi is fork-decomposable.

The proof for the case n ≡ 1 (mod 4) and m ≡ 5, 6 (mod 8) is similar to the proof of
Case 2. �

4. Total graph of corona of cycles and null graphs

In this section, we investigate the existence of necessary and sufficient conditions for
the fork-decomposition of total graph of corona of cycles Cn and null graphs Km.

We label the vertices of Cn ◦Km as follows:
Let V (Cn) = {u1, u2, . . . , un} and let Vi = {vi1, vi2, . . . , vim / 1 ≤ i ≤ n} be the set of

pendant vertices adjacent to ui.
Let E(Cn ◦Km) = {{ei, fij} / ei = uiui+1, fij = uivij where 1 ≤ i ≤ n, 1 ≤ j ≤ m.}
Then, V (T (Cn ◦Km)) = {ui, ei, vij , fij/1 ≤ i ≤ n, 1 ≤ j ≤ m} and

E(T (Cn ◦Km)) = {{uiei, ei−1ui, uiui+1, eiei+1/1 ≤ i ≤ n}
∪{uifij , uivij , eifij , fijvij , eif(i+1)j/1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{fijfik/j 6= k, 1 ≤ i ≤ n, 1 ≤ j, k ≤ m}}.

Remark 4.1. The number of edges in Total graph of Cn ◦Km is 2(mn+ n) + 1
2(mn.12 +

(n).(m + 2)2) = 2mn + 2n + 1
2(mn + n(m2 + 4 + 4m)) = 1

2(m2n + 9mn + 8n) =
1
2(mn(m + 1) + 8n(m + 1)) = 1

2(n(m + 1)(m + 8)).

The following 8 lemmas are needed for proving the necessary and sufficient conditions
for the fork-decomposition of T (Cn ◦Km).

Lemma 4.1. T (Cn ◦K1) is fork-decomposable if and only if n ≡ 0 (mod 4).

Proof. The number of edges in T (Cn ◦K1) is 1
2(n(1 + 1)(1 + 8)) = 9n.

If the graph is fork-decomposable, then 9n ≡ 0 (mod 4) which implies n ≡ 0 (mod 4).
Conversely, assume that n ≡ 0 (mod 4).
Then, a fork-decomposition of T (Cn ◦K1) is given by {uiei, uifi1, uiei−1, fi1vi} where

1 ≤ i ≤ n, {uiui−1, uivi, uiui+1, ui−1vi−1} where i ≡ 0 (mod 2), {eif(i+1)1, eiei+1, eifi1,
fi1ei−1} where i ≡ 1 (mod 4), {eifi1, eif(i+1)1, eiei+1, ei+1f(i+2)1} where i ≡ 2 (mod 4),
{eiei+1, eifi1, eiei−1, ei−1f(i−1)1} where i ≡ 0 (mod 4) and the subscripts are taken modulo
n. Hence, the graph T (Cn ◦K1) is fork-decomposable. �

Lemma 4.2. T (Cn ◦K2) is fork-decomposable if and only if n ≡ 0 (mod 4).

Proof. The number of edges in T (Cn ◦K2) is 1
2(n(2 + 1)(2 + 8)) = 15n.

If the graph is fork-decomposable, then 15n ≡ 0 (mod 4) which implies n ≡ 0 (mod 4).
Conversely, assume that n ≡ 0 (mod 4). Consider the collection of forks {uivi2, uifi1,

uifi2, fi2ei}, {fi1ei, fi1ei−1, fi1vi1, vi1ui}, {fi2fi1, fi2vi2, fi2ei−1, ei−1ui} where 1 ≤ i ≤ n
and the subscripts are taken modulo n. After removing the above collection of forks,
we get the induced subgraph 〈{ui, ei/1 ≤ i ≤ n}〉 isomorphic to Cn�P2, which is fork-
decomposable by Theorem 2.5. Hence, the graph T (Cn ◦K2) is fork-decomposable. �

Lemma 4.3. T (Cn ◦K3) is fork-decomposable if and only if n ≡ 0 (mod 2).
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Proof. The number of edges in T (Cn ◦K3) is 1
2(n(3 + 1)(3 + 8)) = 22n.

If the graph is fork-decomposable, then 22n ≡ 0 (mod 4) which implies n ≡ 0 (mod 2).
Conversely, assume that n ≡ 0 (mod 2). Consider the collection of forks {fijvij , fijui,

fijfi(j+1), fi(j+1)ei−1} where 1 ≤ i ≤ n, j = 1, 2, 3 and {eifi1, eifi2, eiei−1, ei−1ui}, {uivi1,
uivi2, uiei, eifi3} where 1 ≤ i ≤ n. After removing the above collection of forks, we get the
induced subgraph 〈{ui, vi3 / 1 ≤ i ≤ n}〉 isomorphic to Cn◦K1, which is fork-decomposable
by Theorem 2.3. Here the subscripts are taken modulo n. Hence, the graph T (Cn ◦K3) is
fork-decomposable. �

Lemma 4.4. T (Cn ◦K4) is fork-decomposable if and only if n ≡ 0 (mod 2).

Proof. The number of edges in T (Cn ◦K4) is 1
2(n(4 + 1)(4 + 8)) = 30n.

If the graph is fork-decomposable, then 30n ≡ 0 (mod 4) which implies n ≡ 0 (mod 2).
Conversely, assume that n ≡ 0 (mod 2). Consider the collection of forks {uivi4, uifi1,

uifi4, fi4fi2}, {uivi3, uifi2, uifi3, fi3fi1}, {uivi1, uivi2, uiei−1, ei−1ei}, {fijvij , fijvi(j+1),
fijei, fi(j+1)ei−1}, where 1 ≤ i ≤ n and j = 1, 2, 3, 4. After removing the above collection
of forks, we get the induced subgraph 〈{ui, ei/1 ≤ i ≤ n}〉 isomorphic to Cn ◦K1, which is
fork-decomposable by Theorem 2.3. Here, the subscripts are taken modulo n. Hence, the
graph T (Cn ◦K4) is fork-decomposable. �

Lemma 4.5. T (Cn ◦K5) is fork-decomposable if and only if n ≡ 0 (mod 4).

Proof. The number of edges in T (Cn ◦K5) is 1
2(n(5 + 1)(5 + 8)) = 39n.

If the graph is fork-decomposable, then 39n ≡ 0 (mod 4) which implies n ≡ 0 (mod 4).
Conversely, assume that n ≡ 0 (mod 4).
Then, T (Cn ◦ K5) can be decomposed into {fijvij , fijfi(j−1), fijfi(j−2), vijui} where

1 ≤ i ≤ n and j = 1, 2, 3, 4, 5, {uiei−1, uiei, uiui+1, ui+1ei+1}, {ui+2ei+1, ui+2ui+1,
ui+2ui+3, ui+1ei}, {ui+3ei+3, ui+3ei+4, ui+3ei+2, ei+2ui+2} where i ≡ 1 (mod 4), {eifi1,
eifi2, eifi3, fi2ui}, {uifi3, uifi4, uifi5, fi5ei}, {ei−1fi3, ei−1fi4, ei−1fi5, fi4ei}, {ei−1ei,
ei−1fi2, ei−1fi1, fi1ui} where 1 ≤ i ≤ n and the subscripts are taken modulo n. Hence,
the graph T (Cn ◦K5) is fork-decomposable. �

Lemma 4.6. T (Cn ◦K6) is fork-decomposable if and only if n ≡ 0 (mod 4).

Proof. The number of edges in T (Cn ◦K6) is 1
2(n(6 + 1)(6 + 8)) = 49n.

If the graph is fork-decomposable, then 49n ≡ 0 (mod 4) which implies n ≡ 0 (mod 4).
Conversely, assume that n ≡ 0 (mod 4). Consider the collection of forks {fi1ei−1,

fi1ui, fi1ei, ei−1fi5}, {fi2ei−1, fi2ui, fi2ei, uifi6}, {fi3ei−1, fi3ui, fi3ei, ei−1fi6}, {fi4 ei−1,
fi4ui, fi4ei, eifi5}, {uiei−1, uifi5, uiei, eifi6}, {fi5vi5, fi5fi6, fi5fi4, fi4vi4}, {fi6fi4, fi6fi2,
fi6fi1, fi1fi5}, {uivi5, uivi6, uivi1, vi6fi6} where 1 ≤ i ≤ n, {fijvij , fijfi(j+1), fijfi(j+2),
fi(j+1)fi(j+4)} where 0 ≤ i ≤ n and j = 1, 2, 3. Here the subscripts are taken modulo
n. After removing the above collection of forks, we get the induced subgraph 〈{u1, u2,
. . . , un, vi2, vi3, vi4} / 1 ≤ i ≤ n〉 isomorphic to Cn ◦K3, which is fork-decomposable by
Theorem 2.3. Hence, the graph T (Cn ◦K6) is fork-decomposable. �

Lemma 4.7. T (Cn ◦K7) is fork-decomposable for all values of n.

Proof. The number of edges in T (Cn ◦K7) is 1
2(n(7 + 1)(7 + 8)) = 60n.

If the graph is fork-decomposable, then by Equation (1), n can take all values.
Now, let us prove the converse part. The induced subgraph 〈{fi1, fi2, . . . , fi7, vi1, vi2,

. . . , vi7} / 1 ≤ i ≤ n〉 is isomorphic to n copies of K7 ◦K1 which are fork-decomposable
by Theorem 2.4. The fork-decomposition of the subgraph after removing above induced
subgraph is given by {fijei−1, fijui, fijei, uivij} where 1 ≤ i ≤ n and j = 1, 2 . . . , 5,
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{ei−1fi6, ei−1fi7, ei−1ui, uivi6}, {uifi6, uifi7, uivi7, fi7ei}, {eifi6, eiui, eiei−1, uiui+1}
where 1 ≤ i ≤ n and the subscripts are taken modulo n. Hence, the graph T (Cn ◦K7) is
fork-decomposable. �

Lemma 4.8. T (Cn ◦K8) is fork-decomposable for all values of n.

Proof. The number of edges in T (Cn ◦K8) is 1
2(n(8 + 1)(8 + 8)) = 72n.

If the graph is fork-decomposable, then by Equation (1), n can take all values.
Now, let us prove the converse part. The induced subgraph 〈{fi1, fi2, . . . , fi8, vi1, vi2,

. . . , vi8 / 1 ≤ i ≤ n}〉 is isomorphic to n copies of K8 ◦K1 which are fork-decomposable by
Theorem 2.4. The fork-decomposition of the subgraph after removing the above induced
subgraph is given by {eiui+1, eiei−1, eiui, uiui−1} where 1 ≤ i ≤ n, {fijei−1, fijei, fijui,
uivij} where 1 ≤ i ≤ n and j = 1, 2 . . . , 8 and the subscripts are taken modulo n. Hence,

the graph T (Cn ◦K8) is fork-decomposable. �

Lemma 4.9. T (Cn ◦K9) is fork-decomposable if and only if n ≡ 0 (mod 4).

Proof. The number of edges in T (Cn ◦K9) is 1
2(n(9 + 1)(9 + 8)) = 85n.

If the graph is fork-decomposable, then 8n ≡ 0 (mod 4) which implies n ≡ 0 (mod 4).
Now, let us prove the converse part. The induced subgraph 〈{ui, ei, vi9, fi9} / 1 ≤ i ≤ n〉

is isomorphic to T (Cn ◦ K1) which is fork-decomposable by Lemma 4.1. The induced
subgraph 〈{fi1, fi2, . . . , fi8, vi1, vi2, . . . , vi8} / 1 ≤ i ≤ n〉 is isomorphic to n copies of
K8 ◦K1 which are fork-decomposable by Theorem 2.2. Consider the subgraph obtained
after removing the above T (Cn ◦ K1) and n copies of K8 ◦ K1. The induced subgraph
〈{fi5, fi6, . . . , fi9, ui, ei, ei−1} / 1 ≤ i ≤ n〉 is isomorphic to n copies of K4,4 which are fork-
decomposable by Theorem 2.1. The induced subgraph 〈{fi1, fi2, fi3, fi4, fi9, ei−1} / 1 ≤
i ≤ n〉 is isomorphic to K2,4 which is fork-decomposable by Theorem 2.1. The fork-
decomposition of the induced subgraph obtained after removing the above subgraphs is
given by {uivik, uivi(k+4), uifik, fikei} where 1 ≤ i ≤ n and k = 1, 2, 3, 4. Hence, the graph

T (Cn ◦K9) is fork-decomposable. �

Theorem 4.1. T (Cn ◦Km) is fork-decomposable if and only if it satisfies any one of the
following conditions:

(1) m ≡ 0, 7 (mod 8).
(2) n ≡ 0 (mod 2) and m ≡ 0, 3 (mod 4).
(3) n ≡ 0 (mod 4).

Proof. Let V (Cn ◦Km) = {ui / 1 ≤ i ≤ n} ∪ {vij / 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where ui are
the support vertices and vij are the pendant vertices adjacent to corresponding ui.

Let E(Cn ◦Km) = {ei, fij / ei = uiui+1, fij = uivij for 1 ≤ i ≤ n, 1 ≤ j ≤ m.}
Then, V (T (Cn ◦Km)) = {ui, ei, vij , fij/1 ≤ i ≤ n, 1 ≤ j ≤ m} and

E(T (Cn ◦Km)) = {uiei, ei−1ui, uiui+1, eiei+1/1 ≤ i ≤ n}
∪{uifij , uivij , eifij , fijvij , eif(i+1)j/1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{fijfik/j 6= k, 1 ≤ i ≤ n, 1 ≤ j, k ≤ m}.

The number of edges in T (Cn ◦ Km) is 1
2(n(m + 1)(m + 8)). If the graph is fork-

decomposable, then n(m+ 1)(m+ 8) ≡ 0 (mod 8) which implies nm(m+ 1) ≡ 0 (mod 8).
If n is odd, then m(m + 1) ≡ 0 (mod 8) which implies m ≡ 0 (mod 8) or m + 1 ≡

0 (mod 8). Hence, m ≡ 0 (mod 8) or m ≡ 7 (mod 8) for all values of n which is condition
1. If n is even, then m(m + 1) ≡ 0 (mod 4). This implies that, m ≡ 0 (mod 4) or
m + 1 ≡ 0 (mod 4). Hence, m ≡ 0 (mod 4) or m ≡ 3 (mod 4) which is condition 2. Also,
since m(m + 1) is even, n ≡ 0 (mod 4) which is condition 3.
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Now, let us prove the converse part.
Case 1. m ≡ 0, 7 (mod 8).
Subcase (a) m ≡ 0 (mod 8).

If m = 8, the result is proved for all values of n by Lemma 4.8. For m > 8, consider the
induced subgraph 〈{ui, ei, vim, vi(m−1), . . . , vi(m−7), fim, fi(m−1), . . . , fi(m−7)} / 1 ≤ i ≤ n〉
is isomorphic to T (Cn ◦K8) which is fork-decomposable by Lemma 4.8.

The induced subgraph obtained by removing the above T (Cn ◦K8) from T (Cn ◦Km)
is isomorphic to a graph which can be decomposed into n copies of K8,m−8 and n copies
of H1 which is given in figure 1. The graph K8,m−8 is fork-decomposable by Theorem 2.1.
The vertices inside the dotted ellipse in figure 1 is adjacent to each other and hence it
forms a complete graph Km−8.

Figure 1. H1

The induced subgraph 〈{fi1, fi2, . . . , fi(m−8), vi1, vi2, . . . , vi(m−8)} / 1 ≤ i ≤ n〉 is iso-
morphic to n copies of Km−8 ◦ K1 which is fork-decomposable by Theorem 2.4. The
fork-decomposition of the remaining subgraph after removing K8,m−8 and Km−8 ◦ K1

from H1 is given by {fijei−1, fijei, fijui, uivij} where 1 ≤ i ≤ n, 1 ≤ j ≤ m− 8.
Subcase (b) m ≡ 7 (mod 8).

If m = 7, the result is proved for all values of n by Lemma 4.7. For m > 7, the
induced subgraph 〈{ui, ei, vim, vi(m−1), . . . , vi(m−6), fim, fi(m−1), . . . , fi(m−6)} / 1 ≤
i ≤ n〉 is isomorphic to T (Cn ◦ K7) which is fork-decomposable by Lemma 4.7. The
subgraph obtained after removing the above T (Cn ◦K7) from T (Cn ◦Km) is isomorphic
to a graph which can be decomposed into n copies of K7,m−7 which are fork-decomposable
by Theorem 2.1 and n copies of H1 (Figure 1) which are also fork-decomposable.
Case 2. n ≡ 0 (mod 2) and m ≡ 0, 3 (mod 4).
Subcase (a) n ≡ 0 (mod 2) and m ≡ 0 (mod 4).

If m = 4, the result is proved by Lemma 4.4. For m > 4, the induced subgraph
〈{ui, ei, vim, vi(m−1), . . . , vi(m−3), fim, fi(m−1), . . . , fi(m−3)} / 1 ≤ i ≤ n〉 is isomorphic

to T (Cn ◦K4) which is fork-decomposable by Lemma 4.4. The subgraph obtained after
removing the above T (Cn ◦K4) from T (Cn ◦Km) is isomorphic to a graph which can be
decomposed into n copies of K4,m−4 which are fork-decomposable by Theorem 2.1 and n
copies of H1 which are also fork-decomposable.
Subcase (b) m ≡ 3 (mod 4) and n ≡ 0 (mod 2).

If m = 3, the result is proved by Lemma 4.3. For m > 3. The induced subgraph
obtained by 〈{ui, ei, vim, vi(m−1), vi(m−2), fim, fi(m−1), fi(m−2)} / 1 ≤ i ≤ n〉 is isomorphic

to T (Cn ◦K3) which is fork-decomposable by Lemma 4.3. The subgraph obtained after
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removing the above T (Cn ◦K3) from T (Cn ◦Km) is isomorphic to a graph which can be
decomposed into n copies of K3,m−3 which are fork-decomposable by Theorem 2.1 and n
copies of H1 which are also fork-decomposable.
Case 3. n ≡ 0 (mod 4).

It is enough to prove the result for m ≡ 1, 2 (mod 4). Let m ≡ 1 (mod 4). For m = 1, 5, 9,
the result is proved by Lemmas 4.1, 4.5 and 4.9. For m > 9, the induced subgraph
〈{ui, ei, vim, vi(m−1), . . . , vi(m−8), fim, fi(m−1), . . . , fi(m−8)} / 1 ≤ i ≤ n〉 is isomorphic

to T (Cn ◦K9) which is fork-decomposable by Lemma 4.9. The subgraph obtained after
removing the above T (Cn ◦K9) from T (Cn ◦Km) is isomorphic to a graph which can be
decomposed into n copies of K9,m−9 which are fork-decomposable by Theorem 2.1 and n
copies of H1 which are also fork-decomposable.

Now, let m ≡ 2 (mod 4). For m = 2, the result is proved by Lemma 4.2. For m > 2,
the induced subgraph 〈{ui, ei, vim, vi(m−1), fim, fi(m−1)} / 1 ≤ i ≤ n〉 is isomorphic to

T (Cn ◦ K2) which is fork-decomposable by Lemma 4.2. The subgraph obtained after
removing the above T (Cn ◦K2) from T (Cn ◦Km) is isomorphic to a graph which can be
decomposed into n copies of K2,m−2 which are fork-decomposable by Theorem 2.1 and n
copies of H1 which are also fork-decomposable. �

5. Conclusion

In this paper, we have reviewed the literature on decomposition of graphs and its ap-
plications with special reference to the subgraph fork. Fork-decomposition of 191-edge
connected graphs has already been studied in the literature. But this constant is far from
best possible. Very little is known about lower bounds. In this paper, we have investi-
gated and characterized some class of 2-edge connected graphs for fork-decomposition. In
Section 3, we have characterized the fork-decomposition of total graph of paths and null
graphs. In Section 4, we have characterized the fork-decomposition of total graph of cycles
and null graphs. A similar characterization for fork-decomposition of T (G ◦ Km) where
G ∈ {Kn,Km,n,Wn} seems to be an interesting open problem for further research.
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