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MAXWELL-CATTANEO LAW OF HEAT CONDUCTION THROUGH

POROUS FERROCONVECTION WITH MAGNETIC FIELD

DEPENDENT VISCOSITY

V. V. SHREE1∗, C. RUDRESHA2, C. BALAJI3, S. MARUTHAMANIKANDAN4, §

Abstract. The problem of convective instability in a ferromagnetic fluid saturated
porous medium with magnetic field dependent (MFD) viscosity and Maxwell-Cattaneo
law is studied using the method of small perturbation. Darcy model is used to describe
the fluid motion. The horizontal porous layer is heated from below and cooled from
above. Convection is caused by a spatial variation in magnetization which is induced
when the magnetization of the ferrofluid is a function of temperature. The non-classical
Maxwell-Cattaneo heat flux law involves a wave type of heat transport and does not
suffer from the physically unacceptable drawback of infinite heat propagation speed.
For a fluid layer contained between magnetically responding and isothermal boundaries,
approximate solutions for stationary instability are obtained by using the higher order
Galerkin technique. It is shown that the ferromagnetic fluid is distinctly influenced by
the effect of magnetic forces and is prone to instability in the presence of second sound
and MFD viscosity. It is found that the second sound mechanism works in tandem with
the effect of magnetic forces. It is also established that the effects of second sound and
MFD viscosity are mutually antagonistic towards influencing the stability of the system
and that an increase in MFD viscosity attenuates the threshold of porous ferroconvection.
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1. Introduction

Ferromagnetic fluids are formed by suspending submicron sized particles of magnetite
in a carrier medium such as kerosene, heptane or water. To prevent the particles from
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agglomerating in the presence of a magnetic field they are surrounded by a surfactant such
as oleic acid. The combinations of the short range repulsion due to the surfactant and
the thermal agitation yields a material which behaves as a continuum and can experience
forces due to magnetic polarization. The magnetic fluids are usually good insulators and
forces due to interaction of magnetic fields with currents of free charge, such as found in
magnetohydrodynamics, are negligible.

Gupta and Gupta [1] investigated the ferroconvection problem with centrifugal accelera-
tion. It is proved that oscillatory ferroconvection is possible as long as the Prandtl number
is less than unity. Bashtovoy et al., [2] developed magnetic fluids for a variety of appli-
cations including novel energy conversion devices, levitation devices and rotating seals.
Russell et al.,[3] extended the pioneering contribution to deal with large wave number fer-
roconvection. Aniss et al., [4] investigated the influence of a time-sinusoidal magnetic field
on the onset of convection in a horizontal magnetic fluid layer heated from above. In the
cases of free-free and rigid-rigid boundaries, the convective threshold is calculated using
the Floquet theory. The possibility of a conflict between the harmonic and sub-harmonic
modes at the beginning of convection is discussed. When there is a vertical uniform
magnetic field, Abraham [5] investigated the RBC problem in a micropolar ferromagnetic
fluid layer analytically. It is shown that the micropolar ferromagnetic fluid layer is more
stable than the conventional Newtonian ferromagnetic fluid layer when heated from below.

Second sound is a more recent phenomenon involving the propagation of heat as a
temperature wave. Second sound is a quantum mechanical phenomenon in which heat
transfer occurs by wave-like motion rather than by a more usual mechanism of diffusion.
Heat takes the place of pressure in normal sound waves. This leads to a very high thermal
conductivity. It is known as ”second sound” because the wave motion of heat is similar
to the propagation of sound in air. Normal sound waves are fluctuations in the density of
molecules in a substance; second sound waves are fluctuations in the density of particle-like
thermal excitations. Thermal relaxation effects may be important in biological tissues, in
phase changes, in nuclear reactor technology and in surgical procedures and the like.

Considering Bénard and Marangoni problems, Lebon and Cloot [6] investigated the
significance of replacing the classical Fourier law on heat conduction with the Maxwell-
Cattaneo law. Straughan and Franchi [7] studied the impact of thermal waves on the
onset of convective instability in a Newtonian fluid enclosed in a horizontal layer of finite
thickness. Boundaries that are stress-free have been considered. It is discovered that
the Bénard problem for a Maxwell-Cattaneo fluid is always less stable than the classical
one and that overstability only occurs in the heated below case. Pressure and density
variations propagate with very small temperature variations in ordinary or first sound;
in second sound, temperature variations spread without significantly changing the den-
sity or pressure. Recently, it has been realized that this is not just a low temperature
phenomenon, but has important applications in such fields as skin burns, phase changes,
biological materials and in nanofluids (Straughan [8]). The impact of propagating thermal
waves at the commencement of electroconvection in a horizontal layer of dielectric fluid
was qualitatively examined by Maruthamanikandan and Smita [9]. The Cattaneo heat
flow model is used to implement the linear stability analysis, which is based on the normal
mode technique. Instability caused by the Maxwell-Cattaneo heat flux and the internal
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heat generation/absorption of the non-Newtonian Casson dielectric fluid is studied by Ma-
hanthesh et al., [10].

Lapwood [11] investigated the possibility of convective flow in a layer of fluid subjected
to a vertical temperature gradient in a porous medium. Wooding [12] investigated the
conditions for the occurrence of Rayleigh instability of a thermal boundary layer. The ex-
ternal magnetic field hinders the free rotation of the magnetic particles and thus increases
the viscosity of magnetic fluid is known as magnetorheological effect.The contemporary
applications of the magnetorheological effect include dampers, brakes, pumps, clutches,
valves, robotic control systems etc. Ramanathan and Suresh [13] examined the impact
of magnetic field-dependent viscosity on the onset of ferroconvection in an anisotropic,
densely packed porous medium. The distribution is assumed to be anisotropic along the
vertical axis and isotropic along the horizontal axis. The stability criterion, which includes
the critical centrifugal Rayleigh number, the critical wave number and the flow character-
istics at the thresholds was studied by Saravanan and Yamaguchi [14].

To understand the control over convection, Saravanan [15] studied how the magnetic
field affects the onset of centrifugal convection in an anisotropic porous medium saturated
with magnetic fluid. Sekar and Murugan [16] used the Darcy model to investigate the
Soret-driven thermoconvective instability of a ferromagnetic fluid layer heated from below
and salted from above while rotating a densely packed anisotropic porous medium with
magnetic field dependent (MFD) viscosity. Ramachandramurthy et al.,[17] investigated
convective instability and heat transfer in a temperature-sensitive rotating Newtonian liq-
uid with a volumetric heat source and sink, as well as linear and weak nonlinear stability.
When a gravitational field is present, Vidya Shree et al.,[18] investigated the impact of
MFD viscosity on the ferroconvective instability of a fluid-saturated porous medium in
the presence of a varying gravitational field.

Rudresha et al.,[19, 20, 21] studied the effect of electric field modulation in a dielec-
tric fluid saturating porous medium using a regular perturbation approach. The stability
of the system characterized by a correction Rayleigh number is computed as a function
of thermal, electric, and porous parameters, and the frequency of electric field modula-
tion. It is found that the onset of electroconvection can be delayed or advanced by the
presence of these parameters. The effect of various parameters is found to be significant
for moderate values of the frequency of electric field modulation. The system stability is
strongly influenced by the couple stress parameter, and the Prandtl number diminishes
the stabilizing impact. The stability of a horizontal sparsely packed porous layer of a
ferromagnetic fluid heated from below is examined by Balaji et al.,[22, 23] when the fluid
layer is subjected to time-dependent magnetic field modulation. The effects of the oscil-
lating magnetic field are treated by a perturbation expansion in powers of the amplitude
of the applied magnetic field. The onset criterion is derived under the assumption that the
principle of exchange of stabilities holds true and couple stress parameter has a stabilizing
effect on the system. To improve the heat transfer connected with the flow system, the
flow of numerous fluids of various types has been addressed ([24, 25, 26, 27, 28, 29, 30, 31]).

The purpose of this paper is to investigate the qualitative effect of the Maxwell-Cattaneo
law in a ferrofluid layer with magnetic field-dependent viscosity in the presence of a uniform
vertical magnetic field and porous medium. The understanding of the control of ferrocon-
vection by means of variable viscosity is useful in many heat transfer problems, particularly
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in materials science processing. The resulting eigenvalue problem is numerically solved for
magnetically responding isothermal boundary conditions using the Galerkin method.

Figure 1. Schematic of the Problem.

2. Mathematical formulation

We consider a horizontal layer of Boussinesq ferromagnetic fluid saturated a porous
layer of depth d, which is heated from below and cooled from above and confined between
two parallel planes z = −d

2 and z = d
2 maintained at different uniform temperatures with

a temperature gradient ∆T across the fluid layer. A Cartesian frame of reference is chosen
with x and y axes at the lower boundary plane and z-axis acting vertically upwards. The
solid temperature equation is modified to allow heat transfer via the Cattaneo heat flux
theory, while the usual Fourier heat transfer law is used with regard to the heat transfer in
ferrofluids. An inverse linear relationship is considered for the viscosity variation when the
magnetic field is dependent on the viscosity of the magnetic fluid. It should be remarked
that the use of realistic flow boundary conditions does not qualitatively, but quantitatively
change the critical values (Chandrasekhar [32]). Similarly the use of realistic boundary
conditions on the magnetic potential is of only very limited impact on the stability of the
system.

The basic equations governing the flow of an incompressible ferrofluid saturating a layer
of Darcy porous medium with Cattaneo effects in the solid are as follows:

The general form of the continuity equation is

Dρ

Dt
+ ρ (∇ · ~q) = 0. (1)
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Equation (1), for a fluid with Boussinesq approximation, reduces to

∇ · ~q = 0. (2)

The momentum equation for a ferromagnetic fluid under the Boussinesq approximation
with variable viscosity and the Darcy law is

ρo

[
1

ε

∂~q

∂t
+

1

ε2
(~q · ∇) ~q

]
= −∇p+ ρ~g −

µf
k
~q +∇ ·

(
~H ~B
)

(3)

where ~q = (u, v, w) is the fluid velocity, ρ is a reference density, ε is the porosity of the

porous medium, p is the pressure, ~H is the magnetic field, ~B is the magnetic induction,
µf is the dynamic viscosity, k is the permeability of the porous medium. The left side
of equation (3) represents the rate of change of momentum per unit volume. The four
terms on the right side represent, respectively, the pressure force due to normal stress,
body force due to gravity, Darcy resistance due to porous medium and a pondermotive
force arising due to the magnetization of the ferromagnetic fluid.

The heat transport equation for the considered ferromagnetic fluid which obeys modi-
fied Fourier law is

ε

ρoCV,H − µo ~H ·(∂ ~M
∂T

)
V,H

 [∂T
∂t

+ (~q · ∇)T

]
+ (1 − ε) (ρoC)s

∂T

∂t

+ µo T

(
∂ ~M

∂T

)
V,H

·

[
∂ ~H

∂t
+ (~q · ∇) ~H

]
= −∇ · ~Q

(4)

where µo is the magnetic permeability, T is the temperature, ~M is the magnetization, C
is the specific heat, CV,H is the specific heat at constant volume and constant magnetic
field. Here the subscript s represents the solid. The Maxwell-Cattaneo heat flux equation
is

τ

[
∂ ~Q

∂ t
+ (~q · ∇) ~Q + ~ω × ~Q

]
= − ~Q − k 1∇T (5)

where k1 is the thermal conductivity, τ is the constant relaxation time, ~Q is the heat flux
vector, ~ω = 1

2 (∇× ~q).
The density is a linear function of temperature and the same is given by

ρ = ρo [1− α (T − Ta)] (6)

where α is the coefficient of thermal expansion and Ta = T0+T1
2 is the average temperature.

The ferromagnetic fluid considered typically of a suspension of submicron sized particles
of magnetite in a nonmagnetic liquid carrier. In addition, the ferromagnetic fluid obeys
Maxwell’s equations. In writing Maxwell’s equations, one has to keep in mind that the
conductivity of ferromagnetic fluid is very small. Therefore, we assume that the fluid
is electrically nonconducting with the current density zero and hence the magnetic field
equations, neglecting the displacement current, are [33, 34, 35, 36, 37].

∇ · ~B = 0 (7)

∇× ~H = ~0. (8)
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Additionally, ~B, ~M and ~H are connected through the relationship

~B = µo

(
~H + ~M

)
. (9)

We assume that the magnetization is aligned with the magnetic field, but allow a de-
pendence on the magnitude of magnetic field as well as the temperature in the form

~M =
~H

H
M (H,T ) . (10)

The magnetic equation of state is linearized about H0 and Ta to become

M = Mo + χ (H −Ho)−K (T − Ta) (11)

where χ =
(
∂M
∂H

)
H0,Ta

is the magnetic susceptibility, K = −
(
∂M
∂T

)
H0,Ta

is the pyromagnetic

coefficient and M0 = M (H0, Ta).

2.1. Basic State. The quiescent basic state is represented as

∂

∂t
= 0; ~q = ~qb (z) = 0; T = Tb (z) ; p = pb (z) ; ρ = ρb (z) ;

~H = (0, 0, Hb (z)); ~M = (0, 0,Mb (z)); ~B = (0, 0, Bb(z)); µf = µfb(z).

(12)

In the basic state, the temperature, density, magnetic induction and magnetization
equations are as follows [18, 39]

Tb = Ta − βz, ρb = ρ0 [1 + αβz] , Hb = H0 −
Kβz

1 + χ
,

Mb = M0 +
Kβz

1 + χ
, µfb (H) =

µ1

1 + δKβz
1+χ

(13)

where β = ∆T
d is the temperature gradient and the subscript b denotes the basic state. It

may be noted that the fluid and solid phases have the same temperatures at the bounding
surfaces of the porous layer.

2.2. Linear Stability Theory. To investigate the conditions under which the quiescent
solution is stable against small disturbances, we consider a perturbed state in the form

~q = ~qb + ~q′, p = pb + p′, T = Tb + T ′, µf = µfb + µ′f ,

~M = ~Mb + ~M ′, φ = φb + φ′, ~H = ~Hb + ~H ′, ρ = ρb + ρ′
(14)

Substituting (14) into equations (2) through (11), linearizing, eliminating the pressure
term by taking curl twice, the following equations are obtained

ρ0

ε

∂

∂t

(
∇2W ′

)
= αρ0g∇2

1T
′ −

µfb
k

(
∇2W ′

)
+
µ0K

2β

1 + χ
∇2

1T
′ − µ0Kβ

∂

∂z
∇2

1T
′ (15)

(
1 + τ

∂

∂t

)(ρ0c)1

∂T ′

∂t
− µ0KTa

∂

∂t

(
∂φ′

∂z

)
−
{

(ρ0c)2 −
µ0K

2Ta
1 + χ

}
βw′

 = k1∇2T ′ − τk1β

2
∇2W ′ (16)

(
1 +

M0

H0

)
∇2

1φ
′ + (1 + χ)

∂2φ′

∂z2
−K∂T ′

∂z
. (17)
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The normal mode solution is adopted and same takes the formW
′

T ′

φ′

 =

W (z)

θ(z)

φ(z)

 ei(lx+my)+σt (18)

Substitution of (18) into equations (15) through (17) leads to

ρ

ε
σ
(
D2 − k2

h

)
W = −αρ0gk

2
hθ −

µ1

k
(

1 + δKβz
1+χ

) (D2 − k2
h

)
W

− µ0K
2β

1 + χ
k2
hθ + µ0Kβk

2
hDφ

(19)

(1 + τσ)

(ρ0C)1σθ − µ0KTaσDφ

−
{

(ρ0C)2 −
µ0K

2Ta
1 + χ

}
βW

 = k1

(
D2 − k2

h

)
θ − τk1β

2

(
D2 − k2

h

)
W (20)

(1 + χ)D2φ−
(

1 +
M0

H0

)
k2
hφ−KDθ = 0 (21)

whereD = d
dz and k2

h = l2+m2 is the overall horizontal wavenumber. Non-dimensionalizing
equations (19), (20) and (21) using the scaling

W ∗ =
Wd

κ
; θ∗ =

θ

βd
; φ∗ =

φ (1 + χ)

Kβd2
; σ∗ =

σd2

κ
; z∗ =

(z
d

)
; a = khd (22)

we obtain

σ

V a

(
D2 − a2

)
W = − (R+N) a2θ − g (z)

(
D2 − a2

)
W +Na2Dφ (23)

(1 + 2Cσ) (λσθ −W ) + C
(
D2 − a2

)
W −

(
D2 − a2

)
θ = 0 (24)

(
D2 −M3a

2
)
φ−Dφ = 0 (25)

where V a = ενd2

κk is the Vadasz number, R = αgβkd2

νκ is the Darcy Rayleigh number,

N = µ0K2β2d2k
µ1κ(1+χ) is the Darcy-Magnetic Rayleigh number, C = τκ

2d2
is the Cattaneo number,

M2 = µ0K2Ta
(1+χ)(ρ0C)2

is the magnetization parameter, M3 = M0+H0
(1+χ)H0

is the nonlinearity of

Magnetization, V = δKβd
1+χ variable viscosity parameter and g (z) = (1− V z)−1.
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The relevant boundary conditions are [33, 40, 45]

W = θ = 0 at z = ±1

2

Dφ− aφ

1 + χ
= 0 at z = −1

2

Dφ+
aφ

1 + χ
= 0 at z = +

1

2
.

(26)

2.3. Stationary Instability. The stationary instability related simultaneous differential
equations are found to be (with σ = 0)

g (z)
(
D2 − a2

)
W − (R+N) a2θ +Na2Dφ = 0 (27)

W − C
(
D2 − a2

)
W +

(
D2 − a2

)
θ = 0 (28)(

D2 −M3a
2
)
φ−Dφ = 0 (29)

2.4. Numerical solution. Equations (27)-(29) together with the corresponding bound-
ary conditions (26) constitute an eigenvalue problem with R as the eigenvalue. The eigen-
value problem is solved numerically using the Galerkin technique. The Galerkin method
is used to solve the eigenvalue problem as explained in the book by Finlayson [38]. In
this method, the test (weighted) functions are the same as the base (trial) functions.
Accordingly, W , θ and φ are written as

Wi =

(
z2 − 1

4

)i
, θi =

(
z2 − 1

4

)i
and φi = z2i−1 (30)

The trial functions Wi, θi and φi are usually chosen to satisfy the corresponding boundary
conditions, but not the differential equations.

3. Results and discussion

In this paper we study the effect of Maxwell-Cattaneo ferroconvection in a densely
packed porous medium with variable viscosity. The dynamic viscosity is taken to be
a function of the strength of the magnetic field. The results are obtained exactly for
magnetically responding, isothermal boundaries. Critical Rayleigh numbers and the cor-
responding wave numbers are obtained using the higher order Galerkin technique. The
Galerkin method yields an eigenvalue which is stationary to small changes in the trial func-
tions because the Galerkin method is equivalent to an adjoint variational principle. The
mathematical application package MATHEMATICA is used to determine the eigenvalue
expressions and the associated critical numbers and the results are displayed graphically.
The role of various magnetic and non-magnetic properties and their mutual interplay for
the instability is examined. The values of the parameters arising in the study are fairly
standard and are experimentally relevant ([39-46]). The range of the Cattaneo number C
adopted in the study at hand is such that the stationary mode of porous ferroconvection
is the preferred mode.

The simultaneous change in the critical thermal Rayleigh number Rc with the magnetic
Rayleigh number N is displayed in Figures 2 through 5. The magnetic Rayleigh number N
signifies the ratio of release of energy due to magnetic stress to energy dissipation caused
by viscosity and temperature fluctuations. It is observed that magnetic mechanism has
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the stabilising effect in the presence of second sound and MFD viscosity as there is a
monotonic drop in Rc with an increase in the magnetic Rayleigh number N . The spatial
variation resulting from the magnetization due to the application of both temperature and
external magnetic field is largely responsible for inducing ferroconvection (Finlayson [33]).

Figure 2. Variation of N with respect to Rc and C for fixed values of
M3 = 5, V = 0.5 and χ = 3.

In Figure 2, we have plotted the critical thermal Rayleigh number Rc versus the mag-
netic Rayleigh number N for different values of C and for fixed values of V , M3 and χ.
It is found that Rc decreases monotonically with an increase in C indicating that the
effect of second sound phenomenon causes ferroconvection to occur at lower values of Rc.
The Cattaneo number accelerates the onset of ferroconvection because it characterizes the
scaled relaxation time. The treatment of equation of energy as an equation of hyperbolic
type, thereby encompassing a damped equation of wave, is responsible for the augmenting
effect of second sound (Straughan and Franchi [7]).

On the other hand, we see from Figure 3 that the variable viscosity parameter V desig-
nating the MFD viscosity effect is to delay the threshold of porous ferroconvection. The
stabilizing effect of V is heightened when the variable viscosity parameter V is large.
Technological and biomedical applications of magnetic liquids indicate that the effective
viscosity of a ferromagnetic liquid is enhanced by the application of a magnetic field. This
reversible effect, known as magnetorheological effect, is a consequence of the fact that the
particles magnetize in the presence of a magnetic field and form chain-like clusters that
align with the applied field. These chain-like alignments of the dispersed solid particles
impede the motion of the liquid thereby increasing the viscous characteristics of the sus-
pension (Maruthamanikandan [39]).

Figure 4 is a plot of Rc versus the magnetic Rayleigh number N for different values
of the magnetization parameter M3 and fixed values of C, V and χ. The parameter
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Figure 3. Variation of N with respect to Rc and V for fixed values of
C = 0.001, M3 = 5 and χ = 3.

Figure 4. Variation of N with respect to Rc and M3 for fixed values of
C = 0.001, V = 0.5 and χ = 3.

M3 represents the departure of the magnetic equation of state from linearity. We see
that the effect of increasing M3 is to decrease Rc monotonically. Thus the threshold of
ferroconvection in a porous layer with second sound is hastened as the magnetic equation
of state becomes more and more nonlinear. It should be mentioned that the destabilizing
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effect of M3 is almost insignificant when the magnetic Rayleigh number N is small.

Figure 5. Variation of N with respect to Rc and χ for fixed values of
C = 0.001, M3 = 5 and V = 0.5.

Figure 5 shows that the variation of critical Rayleigh number Rc with magnetic Rayleigh
number N for different values of the magnetic susceptibility χ and for fixed values of C,
V and M3. The range of values of the magnetic susceptibility χ is 1 to 5 for most fer-
romagnetic fluids (Finlayson [33]). It is observed that the critical Rayleigh number Rc
increases with an increase in the magnetic susceptibility χ.As with the existing works,
the stabilizing influence of the magnetic susceptibility χ is inconsequential as far as the
stability of the system is concerned.Computations also reveal that convection cell size is
more sensitive with the parameters N , C and V compared to that with M3 and χ.

4. Conclusions

The effect of non-classical heat conduction on the onset of Rayleigh-Benard instability in
a horizontal layer of densely packed porous medium saturated with a Boussinesq-Cattaneo-
ferromagnetic fluid subjected to the simultaneous action of a vertical magnetic field and
vertical temperature gradient is investigated analytically by the method of small pertur-
bation. The stability criteria associated with the stationary instability are delineated in
terms of the critical Rayleigh number, wave number, Cattaneo number, variable viscosity
parameter, magnetic and porous parameters. It is shown that the effect of magnetic force
and second sound is to destabilize the system and the MFD viscosity tends to diminish
the threshold of porous ferroconvection. The onset of porous ferroconvection is enhanced
as the magnetic equation of state becomes more and more nonlinear and the system is
only stabilized slightly due to an increase in the magnetic susceptibility. The outcome of
the study may serve as a tool for engineering and industrial applications such as electronic
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devices, computer storage devices, rotating machinery and the like.
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