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FUZZY IDEALS IN MATRIX NEARRINGS

V. PARUCHURI!, S. BHAVANARI?, R. SALVANKAR?, H. PANACKALS?, S. P. KUNCHAM?®*, §

ABSTRACT. We introduce fuzzy ideal of a matrix nearring corresponding to a fuzzy ideal
of a nearring. We prove properties relating to fuzzy ideals of a nearring and that of a
matrix nearring. Finally, prove an order preserving one-one correspondence between the
fuzzy ideals of R (over itself) and that of My, (R)-group R".
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1. INTRODUCTION

A nearring is a set R together with two binary operations + and - such that: (1) (R, +)
is a group (not necessarily abelian), (2) a-(b-¢)=(a-b) ¢, (3) (a+b)-c=a-c+b-c
for all a,b,c € R. In view of (iii), R satisfies the right distributive law, and so it is called
as a right nearring. It is evident that 0-n = 0 for all n € R. However, n - 0 need not be
equal to 0, in general. We denote Rp = {n € R : n-0 = 0}, the zero-symmetric part of
the right nearring. If R = Ry, then we say that the nearring R is zero-symmetric.

Let (G,+) be a group. By an R-group, we mean a mapping R x G — G (the image of
(n,g) € R x G is denoted by ng), satisfying the following conditions: (1) (n + n')g =
ng +nlg, and (2) (nn')g = n(n'yg) for all g € G and n,n' € R.

Throughout, we denote R for a right nearring and R-group by rG or (simply by G).
If R = G then we denote gR. A subgroup (H,+) of (G, +) with RH C H is said to
be an R-subgroup of G. A normal subgroup K of an R-group G is called an ideal if
n(x+a)—nzr e K foralln € Rjx € G and a € K.

For preliminary definitions and results on Nearrings, R-groups and fuzzy aspects, we refer
to [15, 3], for matrix nearrings, we refer to [5, 1, 2]. In section 3, we introduce fuzzy
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ideal of a matrix nearring corresponding to a fuzzy ideal of a nearring and prove an order
preserving one-one correspondence between the fuzzy ideals of R (over itself) and those of
M, (R)-group R"™. In section 4, we prove properties of Insertion of Factors Property (IFP,
in short) in matrix nearrings.

2. PRELIMINARIES OF MATRIX NEARRINGS
Matrix nearrings over arbitrary nearrings were introduced in [14].

Definition 2.1. Consider R with mutiplicative identity 1. R™ denotes the direct sum of
n-copies of (R,+). For any r € R,1 <i <mn and 1 < j < n, define f; : R" — R"
as fii(ar,az, - ,an) = (0,--- ,raz,---,0) (here ra; is in the it place). If f": R — R
defined by f"(x) = rx for all x € R,i; : R — R™ is the canonical monomorphism; and
7+ R* — R is the j projection map, then it is clear that L =1iif ' and f]; € M(R")
where M (R™) is the nearring of all mappings from R™ — R"™. The sub-nearring My (R) of
M(R"™) generated by { T eR1<4,7< n} is called the matrix nearring over R, and
R"™ becomes an M, (R)—group. The length of an expression is the number of i; i at. The

weight w(A) of a matriz A is the length of an expression of minimal length for A.

Lemma 2.1. (3.1(%ii), (v), 2.3 of [14]):
(1) For any r,s € R we have

rsoifj =k
=92
TN ilO ifj #k
where i,7,k,1 € {1,2,--- ,n}. ,
(2) (i, + o+ fok) = F5Faw)™7 = Fiy) -
(3) Let Ae M,(R), x € R, 1 <i,j <n. Then there exist aj,as, - ,a, € R such that
Af;; = f{ljl _|_..._|_f7‘11;.
Result 2.1. (Prop. 4.1 of [14]): If L is a left ideal of R then L™ is an ideal of the
M, (R)-group R".
Notation: For an ideal I of M, (R),
I, ={x € R:x €im(m;A) for some AcIandl < j<n}.
Result 2.2. (Lemma 4.4 of [14]): If I is a two sided ideal of M, (R), then a € I, if and
only if f{; € 1.
Result 2.3. (Corollary 4.5 of [14]): If I is a two sided ideal of M, (R), then a € I, if and
only if Z-‘;-e[foralllgign,lgjgn.

Theorem 2.1. (Theorem 4.6 of [14]): If I is a two sided ideal of M, (R), then I, is a two
sided ideal of R.

Definition 2.2. (1) An element A € M,(R) is said to be nilpotent if there exists a
positive integer k such that A¥ = 0.
(2) M, (R) is said to be reduced if M,(R) has no non-zero nilpotent elements.

Definition 2.3. Following the notation from ([2], Notation 1.1), for any ideal Z of M, (R)-
group R™, we write

T ={a€ R:a=mjA, for some AcZ,1<j<n}.
It can be seen that I, ={a € R: (a,0,---,0) € Z}.
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Lemma 2.2. 1.3, 1.4, 1.5 of [2]
(1) L is an ideal of rR.
(2) If L™ is an ideal of R", then L = (L™ ).
(3) L is an ideal of gR, then L = (L™).x.
(4) L is an ideal of R™, then (L.)" = L.

Theorem 2.2. (Proposition 2.5 of [6]): Let S C R. Then Ag is a fuzzy ideal of R if and
only if S is an ideal of R.

Definition 2.4. ([6]): Let p be a fuzzy subset of R. Then p, = {x € R: u(z) > u}, for
all w € [0,1], is called the level subset of u.

Theorem 2.3. ([6], [17]): Let p be a fuzzy subset of R. Then py, t € [0, 1(0)] is an ideal
of R if and only if p is a fuzzy ideal of R.

Definition 2.5. ([6]): A fuzzy ideal p of R is called prime if for any two fuzzy ideals o
and 0 of R such that o 00 C u implies that o C p or 0 C p.

Example 2.1. Let R = {p,q,r,s} be a set with two binary operations + and - is defined
as follows.

+|plq|T|s
p|plg|T|s
qlq|p|s|r
T TS| pP|qg
S S|r|q|p
TABLE 1

by P e ) or e sk y #9)
q, ifx e{r,sh,y=-s

Then (R,+) is an (R, +,)-group. Define a fuzzy subset p: R — [0,1] by u(r) = p(s) <

w(q) < p(p). Then p is a fuzzy ideal of R.

3. Fuzzy IDEALS OF MATRIX NEARRINGS

The concept of fuzzy subset was initiated in [21]. Later the authors [6, 17] studied
the concept fuzzy in different algebriac systems, particularly in the theory of rings and
nearrings. A mapping p : X — [0,1], where X be a non-empty set, is called the fuzzy
subset of X.

Definition 3.1. For any two fuzzy subsets o and 6 of R, we define the fuzzy subset o o0
of R as follows:

(O’ o 9)(33) _ SUPg—y. {min(o-(y)) 9(2))} ’ Zf xr = y_Z;
0, otherwise.
Further, o and 6 of R, 0 C 0, we mean o(x) < 0(x) for all x € R.

Definition 3.2. Let pu and o be fuzzy subsets of X and Y respectively, and f a function
of X into Y. The image of u, under f, is a fuzzy subset of Y, defined by

_ ) SUPy(a)=b w(a), if f71(b) # ¢;
(f(w) {0’ i L0 = 6.
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and (f~1(0))(x) = o(f(x)) for all z € X.

Definition 3.3. Let pu be a non-empty fuzzy subset of a nearring R (that is p(u) # 0 for
some u € R). Then p is said to be a fuzzy ideal of R if it satisfies the following conditions:
(1) p(u +v) = min {u(u), p(v)}, (2) p(—u)

= (), (9) ) = plo £ =0), (4) plae) 2 p(), (5) pfulv +3) =k 2 i) Jor al
u,v,1 € .

Note 3.1. If p is a fuzzy ideal of R, then pu(u + v)
= p(v+u), and p(0) > p(u), for all u,v € R.

Definition 3.4. Let I be an ideal of R. We define the characteristic function on I as

Ar: R —[0,1], where
1 if wel,
/\[(u) = f i
0 otherwise.

We introduce fuzzy ideal of a matrix nearring corresponding to a fuzzy ideal of a near-
ring.
Definition 3.5. Let u be fuzzy ideal of R. We define pu* : R™ — [0,1] by pu*(uy, -+ ,up)
= min{pu(u1), -, p(tn)}-

Note 3.2. p*(0,--- ,uj,---,0) > p*(ur, - ,up), for any u;, 1 < i < n in R. Since p
is a fuzzy ideal of R, pu(0) > p(x), Yo € R. Therefore, min{u(0),--- , p(u;), -, p1(0)} =
p(ug) = min{p(ur), p(ug), -+, p(un)}-

Lemma 3.1. If p is a fuzzy subgroup of R, then p* is a fuzzy subgroup of My (R)-group R™.

Proof. Suppose p is a fuzzy subgroup of R. Take p1, p2 € R™. Then p; = (u1,--- ,uy,) and
p2 = (v1,- - ,vy) for some u;,v; € R, 1 <i < n. Now
1 (p1+p2) = ((wa, -+ s un) + (vi,0 0, 00))

= p*(ur 4+ v, Un + Yn)

=min{p(us +v1), -, w(uy +vy)}

= min{p(ur), p(v1), ,,, w(un), p(vn)}

= min{yp(u1), -+, p(un), p(vr), -+ p(vn)}

= min{min{(u, - ,up)}, min{(vy, - ,v,)}}

= min{u*(p1), w*(p2)}

Lemma 3.2. If u is a fuzzy ideal of R, then

M*(f[j(ula" : )un)) Z N*(ulv"' 7un))
forallr € Rand1<1,57 <n.

P?"OOf. We have ILL*( '{j(ﬂlvﬂ?? T 7,“’71))

:/‘[/‘k(o7 ’ruj,... 70)

= mln{,u(O), T 7'LL(’/’UJ‘)7 T aM(O)} (Since :U’(O) = O)

= p(ru;) (since pu(0) > p(x), for all @ € R) > p(ru;) (since p is a fuzzy ideal of R)

= mln{,u(O), T 7N(uj)v T 7:“'(0)}

:/J/*(O’...’uj7...’0)2/_1/*(u17...’uj7...’un)‘ D
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Lemma 3.3. u is a fuzzy ideal of R, p* : R™ — [0, 1] satisfies p*(X +Y — X) = pu*(Y),
for all X,Y € R™.

Proof. Let X = (u1,--+ ,up) and Y = (vy,- -+, v,,) be elements of R™. Now p*((uy, - ,un)+
(/U17”. 7vn) - (Ul,' te 7un)) - ,U’*((ul +U1 _ul)u" : a(un+vn _Un))

= min{p(u1 +vi —u1), -, (un + vy, — up)}. Since p is a fuzzy ideal of R, min{u(u; +
U1 — Ul), e ):U’(un + vp — u?’b)} 2 min{lu’(vl)7 e 7“(””)} = :U‘*(Ula e )Un)' U

Lemma 3.4. If i is a fuzzy ideal of R (over itself) then p* is a left ideal of M, (R)-group
R".

Proof. Let X = (u1, -+ ,u,) and Y = (v1,--+,v,) be elements of R™. We prove this
by induction on weight of a matrix. We prove for weight of A € M, (R) is 1. Then
A= fl;. Now p*(fi(X +Y) — fL(X)) = 0w (fl;(wan +v1, -+ yun +vn) — f(ur, - un)) =
M*(Ov"' ,T<$j+yj) — Ty, 70) :M*((()? 77’(Uj+Uj),--- 70) - (07 7 TLgy e 70)) =
pu(r(uj +v;) = raj) > p(vy) (since p is a fuzzy ideal) = min{u(0),- -, pu(v;), -, u(0)}

= p*0,---,vj,---,0) > pu*(v1,--- ,vy). By induction on weight of A € M, (R), we can
prove for the cases either A = B+ C or A = BC, where w(B) < w(A) and w(C) < w(A),
so p* is a left ideal of M, (R)-group R". O

Now we summarize the following one-one correspondence theorem as follows.

Theorem 3.1. There is an order preserving one-one correspondence between FI(R),
the set of the fuzzy ideals of R-group R and FI(My,(R)), the set of the fuzzy ideals of
M, (R)-group R™.

Proof. Define ¢ : FI(R) — FI(M,(R)) by u — p*. To prove v is one-one:

Suppose 1 # p2. Then there exists u; € R such that uq(u1) # pa(uq).

Take A = fi; € My(R). pi(A) = pi(fiy(u,--- un))

= 47 (u1,0,0---,0). By definition of uj, we get uj(u1,0,0---,0) = min{pu(ui),---, p(0)}.
By the supposition min{ju(us), - ,u(0)} = pn () # i (ts).

By definition of u3, we have

p2(ur) = mingpo(ur), p2(0), -~} = pp(ua, -~ ,0)

= u5(f11(ur, -+ ,un)) = p5(A). Therefore ¢ is one-one.

Now we prove the order preserving property.

Suppose i1 and pig be two fuzzy ideals of R such that py C pg. Now for any fl; € M, (R),

P(p2)(fi)
= (N;firj)(ulvu% et Up) = H;(Q BREACT TR ,0)
= min{u2(0),- -+, pa(ru;), -, u2(0)} (by definition of u3) = po(ru;) (since po is a fuzzy
ideal of R) > pi(ru;) (by the supposition) = min{1(0), -, pi(ru;), -+, p1(0)}
= p7(0,- -+ ,ruj,---0) (by definition of uj) = ¥ (p1)(f];). Therefore (u1) C P(u2). We
show that 1) is onto: Let § be a fuzzy ideal of R™. Define 6(z) = §(f).
It can be verified that § is a fuzzy ideal of R.
Clearly §(y + x — y) = 6(x).
Now d6(nx) = §(nz,0,0,---,0) > §(f& (x,0,---,0))
> §(x,0,---,0)=d(z), and d(n(n’ + z) — nn)
=d(n(n +z)—nn',0,0,---,0)
=6((n(n' +x),---,0) = (nn,---,0))
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= 3(f{1((n’,0,-++,0) + (x,-,0)) = f{i(n’,0,---,0))

> 4(x,0,- ,0) é(x). B

(0)*(u1,uz, -+ ,uy) = min{o(uy), - ,0(un)}

:mn{é(ul, g5 0), 5(Um"' ,0)}

:mn{é(fll(uh n))? o (fln(ul"” ’u”>)}

> min{d(ug, - - - ,un),d(ul,---Lun),--- JO0(ur, -y un) b,

= &(u1,- - ,up). Therefore (§)* D 8. Also §(uy, - ,up) = 8((u1,0,0,-++,0) + -+ +
(0, ,Un))

> mn{é(ul,O 0,--+,0),-++,0(0,-+ ,up)}

= mn{é(fll(ul,--- wn))s s 8 fap(uns - un))}
—IED{5(U1,0 0,---,0),--+,6(up,0,0,---,0)}
= (0)*(ug,- -+ ,upn ), and the proof is complete. O

4. MORE RESULTS ON MATRIX NEARRINGS

Definition 4.1. [5] Let I be a two sided ideal of R. Then IT is the ideal generated by
{fg:sel, 1<k, l<n}in My(R).

Result 4.1. Let R be a zero symmetric right nearring. Then an ideal I satisfies Insertion
of Factors Property (abbr. IFP) if and only if I satisfies IFP.

Proof. Suppose I satisfies IFP. To show I satisfies IFP, let
i“jf,gl € I'" where

a,b € I,1 < 4,j,k,l < n. On a contrary, suppose there exists f,, € M, (R) such that
Bl & 1T

Case (i) : Suppose j = p,q = k. Then fjfgqf,i’l ¢ I". This implies ff, cfb ¢ IT (by
Lemma 2.1), and so fi‘}’:b ¢ It a contradiction, since I satisfies IFP.

Case (ii) : Suppose j # p,q # b. Then ff f f]i’l ¢ I".. This implies ff, cfb & I'", implies

acb ¢ [T and so fi¢¢ IT, a contradlctlon Therefore I satisfies IFP.

Conversely suppose that [ + satisfies IFP. On a contrary way, suppose that I does not
satisfy IFP. Then for all a,b € R such that ab € I and acb ¢ I for someC € R. Now we
have f& € IT, and so f,f5 € I*.. Since It satisfies IFP, fLAfY € It VA € M,(R).
Take A = fS,, then f& f5,fb = “Cb ¢ I't, a contradiction to I satisfies IFP. O

Result 4.2. {f{} : a € R} are central idempotent in My,(R) if and only if {a € R :
a is a central idempotent in R}.

fj,f;i’l € M,(R) such that

Proof. Suppose f{, is central. We show a is a central element. Now f{{ = fi4 fi1 = fiiffu
(since f{y is central) = f{{*. Therefore f{{(1,1,---,1) = fi{*(1,1,---,1) = (az,0,0,---) =
(xa,0,0---,0) = ax = za. Next we suppose that f{; is an idempotent. Now

fol = fua — fafa — fa (since f% is an idempotent). Therefore f& (1,0,---,0) =
f&(1,0,---0). This implies (a2,0,---,0) = (a,0,---,0). Therefore a®> = a, shows that a
is an idempotent. ]

a
(23

Corollary 4.1. a € R is an idempotent in R if and only if f% is an idempotent in M, (R),

for all < i <n.

Proof. ( 5 fi)(w, e, )
= f3(0---,0,am;,0,---0)
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=(0---,0,aaz;,0,---0) = (0---,0,az;,0,---0) (since a® = a) = f&(zx1, 72, -+ ,xp). Con-
versely, take i = 1 and the result follows from the Result 4.2. Let I be an ideal of R.
I"=(I":R")={A € M,(R): Ap € I" for all p € R"}. O

Theorem 4.1. Let I be an ideal of a zero symmetric nearring R. Then I is nilpotent in
R if I* is nilpotent in M,(R).

Proof. Suppose (I*) :{ }forsomnek:GZJr Take p1,p2, -+ ,px € I. Then fI1,---  fIF €
I". Now(fll,---, 11 (1,1,--,1)
117"'7 1;]:_1( r(1,1,--,1))
- 117"'7 %917 (pk‘)oa 0)
- flla"'v 1f_2(pk—lpk>0>"'0)'“

= (p1p2p3 - Pr—1Pk, 0, ,0) = (0,0,---,0) (by supposition).
This implies that pipaps - - - pr—1px = 0, and so I¥ = 0 where k € Zt. Hence, I is a
nilpotent ideal in R. ]

5. CONCLUSIONS

This paper established an order preserving correspondence between the fuzzy ideals of
nearring module R (over itself) and that of R™ over matrix nearring M, (R). The concept
further can be extended to study various prime ideal notions and related radicals in both
the structures.
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