
TWMS J. App. and Eng. Math. V.15, N.1, 2025, pp. 49-62

EXISTENCE OF PERIODIC SOLUTIONS FOR GENERALIZED

NONLINEAR THIRD-ORDER DELAY DIFFERENTIAL EQUATIONS

S. BENHIOUNA1,2∗, A. BELLOUR2, H.M. AHMED3, §

Abstract. In this manuscript, we investigate the existence of solution to generalized
third-order non-linear delay differential equation with periodic coefficients, which in-
cludes many important integral and functional equations that arise in nonlinear analysis
and its applications. Our results are obtained by implementing Schauder’s fixed point
fixed point theorem and rely on a generalization of Ascoli-Arzelá theorem. Moreover, an
example is offered to define the primary results.
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1. Introduction

The delay differential equations are frequently encountered as mathematical models
of most dynamical processes in mechanics, control theory, physics, chemistry, biology,
medicine, economics, atomic energy, information theory (see, for example [9, 11, 14, 15,
16, 18, 19, 23, 24, 27, 28]). In these models, time-delays are related to hidden processes like
the stages of the life cycle, the time between infection and the generation of new viruses,
the infectious period, the immune period, etc. Hale and Verduyn Lunel [11] pointed out
very clearly the importance of the consideration of the delay in the modeling of many
phenomena in physics and biology and [11] presented many examples of delay differential
equations arise in the modeling of many phenomena. The presence of delay in these
equations means that the solutions depend not only on the current time but also on its
past values, this feature makes the analysis of delay differential equations more difficult
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than the differential equations.
Various physical models based on third order differential equations were presented in the
recent book [21], for example, the following third order equation of the type

x
′′′
(t)− λx

′
(t)− 2x(t)x

′
(t) = µ1(Dx

′)(t) + µ2 sin(t), t ∈ R (1)

such that x(t + 2π) = x(t) describes the steady flow of water in a long rectangular tank,
oscillating horizontally near a resonant frequency, Cox and Mortell [8] have considered (1)
with (Dx′)(t) = x(t).
The third-order nonlinear Emden-Fowler delay differential model is written as [10]

x
′′′
(t) = h(t, x(t), x(t− τ), x′(t− τ(t)), x′′(t− τ(t))), t ∈ R (2)

Emden-Fowler delay differential model has a variety of applications in various fields.
The third order delay differential equations have been considered by many authors (see
[1, 3, 7, 9, 10, 11, 20, 21] and the references therein). For example, Gregus [9] studied
the third order linear differential equation, Ardjouni and Djoudi [1] studied the following
second order nonlinear duffing equation with delay and variable coefficients:

x
′′′
(t) + p(t)x

′′
(t) + q(t)x

′
(t) + r(t)x(t) = f(t, x(t), x(t− τ(t))) +

d

dt
g(t, x(t− τ(t))), t ∈ R

(3)

Moreover, Nouioua et al. [20] have studied the third order nonlinear delay differential
equation with periodic coefficients

x
′′′
(t) + p(t)x

′′
(t) + q(t)x

′
(t) + r(t)x(t) = f(t, x(t), x(t− τ(t))) + c(t)x′(t− τ(t)), t ∈ R,

(4)

by using Krasnoselskii’s fixed point theorem.
In the current work, we consider the following more general form of nonlinear third delay
differential equations

x
′′′
(t)+p(t)x

′′
(t)+q(t)x

′
(t)+r(t)x(t) = f(t, x(t), x(t−τ(t)), x′(t−τ(t)), x′′(t−τ(t))), t ∈ R.

(5)
This equation contains as particular cases all the above third order delay differential equa-
tion. Specifically, the important models (1) and (2).

We study the existence of the solution to the equation (5) where the derivatives x′, x
′′

appear in the nonlinear function, while the derivatives x′, x
′′
does not appear in the non-

linear functions of the equations (3) and (4). Our purpose here is to use a generalization
of Ascoli-Arzelá theorem given in [4] and Schauder’s fixed point theorem to show the
existence of a periodic solution for equation (5) under fairly simple conditions.

2. Preliminaries and lemmas

In this section, we provide the following notations and definition.
Let E1, E2 be two finite dimensional Banach spaces endowed with the norms ∥.∥1 , ∥.∥2
respectively, and X be a compact subset of E1. We note by C2(X,E2) the space of all
functions from X to E2 with continuous first derivative, this space is endowed with the

norm ∥f∥ =
2∑

i=0

∥∥f (i)∥∥∞ such that
∥∥f (i)∥∥∞ = sup

x∈X
{∥f (i)∥2} such that f (i) is ith derivative

of the function f .
For our purpose, we need the following definition in C2(X,E2).
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Definition 2.1. [4] The family F ⊂ C2(X,E2) is called equicontinuous if for every ϵ > 0

there is δ > 0 such that
∥∥f (i)(x)− f (i)(y)

∥∥
2
< ε for i ∈ {0, 1, 2} and for all

x, y ∈ X satisfying ∥x− y∥1 < δ.
The family F ⊂ C2(X,E2) is called equibounded if there is a constant M such that
∥f(x)∥2 ≤M for all f ∈ F and all x ∈ X.

The following result gives a generalization of Ascoli-Arzelá theorem in C2(X,E2).

Theorem 2.1. [4] Let F be a subset of C2(X,E2). Then F is relatively compact if and
only if F is equicontinuous and equibounded.

Let T be a positive constant, we consider the spaces

P 0
T = {ψ ∈ C(R), ψ(t+ T ) = ψ(t), ∀t ∈ R}.

P 1
T = {ψ ∈ C1(R), ψ(t+ T ) = ψ(t), ∀t ∈ R}.

P 2
T = {ψ ∈ C2(R), ψ(t+ T ) = ψ(t), ∀t ∈ R}.

It is clear that P i
T (i ∈ {0, 1, 2}) is a Banach space endowed with the norm

∥x∥ =
2∑

i=0

sup
t∈[0,T ]

|x(i)|.

Equation (5) will be studied under the following assumptions:

(H1) f ∈ C(R5,R) such that

f(t+ T, x, y, z, s) = f(t, x, y, z, s), ∀(t, x, y, z, s) ∈ R5.

(H2) There exist ki > 0 , i ∈ {1, ..., 4} and ϕ ∈ C(R,R+) bounded such that

|f(t, u1, u2, u3, u4)| ≤ ϕ(t) + k1|u1|+ k2|u2|+ k3|u3|+ k4|u4|, ∀(t, u1, u2, u3, u4) ∈ R5.

(H3) There exist differentiable positive T-periodic functions a1 and a2 and a positive
real constant ρ such that

a1(t) + ρ = p(t)

a′1(t) + a2(t) + ρa1(t) = q(t),

a′2(t) + ρa2(t) = r(t),

(H4) p, q, r, τ : R −→ R+ are all continuous T−periodic functions, such that∫ T
0 p(s) > ρT ,

∫ T
0 q(s) > 0.

Now, we consider the equation

x′′′(t) + p(t)x′′ + q(t)x′ + r(t)x(t) = h(t),

where h is a continuous T periodic function. It is easy to check, (see [1, 3]), that by virtue
of (H3) and (H4), the above equation can be transformed into the following system{

y′(t) + ρy(t) = h(t),
x′′(t) + a1(t)x

′(t) + a2(t)x(t) = y(t),

To obtain the main result, we need the following lemmas and Corollaries.

Lemma 2.1. [20] Suppose that y, h ∈ PT . Then y is a solution of equation

y′(t) + ρy(t) = h(t),
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if and only if

y(t) =

t+T∫
t

G1(t, s)h(s)ds,

where,

G1(t, s) =
exp(ρ(s− t))

exp(ρT )− 1
.

Corollary 2.1. [20] The Green’s function G1 satisfies the following properties:

G1(t+ T, s+ T ) = G1(t, s), G1(t, t+ T ) = G1(t, t) exp(ρT ),

G1(t+ T, s) = G1(t, s) exp(−ρT ), G1(t, t+ T ) = G1(t, s) exp(ρT )

∂G1(t, s)

∂s
= ρG1(t, s),

∂G1(t, s)

∂t
= −ρG1(t, s).

and m1 ≤ G1(t, s) ≤M1,

where m1 =
1

exp(ρT )− 1
,M1 =

exp(ρT )

exp(ρT )− 1
.

Lemma 2.2. [22] Suppose that (H3) and (H4) are satisfied and

R1 exp

[(
T∫
0

a1(v)dv

)
− 1

]
Q1T

≤ 1,

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣∣∣∣
t+T∫
t

exp(
T∫
0

a1(v)dv)

exp(
T∫
0

a1(v)dv)− 1

a2(s)ds

∣∣∣∣∣∣∣∣∣ ,

Q1 =

1 + exp

 T∫
0

a1(v)dv

2

R2
1.

Then there are continuous T−periodic functions a and b such that b(t) > 0,
∫ T
0 a(v)dv > 0,

and a(t) + b(t) = a1(t), b
′(t) + a(t)b(t) = a2(t) for t ∈ R.

Lemma 2.3. [22] Suppose that the conditions of Lemma 2.2 are satisfied and y ∈ PT .
Then the equation

x′′(t) + a1(t)x
′(t) + a2(t)x(t) = y(t),

has a T periodic solution. Moreover, the periodic solution can be expressed by

x(t) =

t+T∫
t

G2(t, s)y(s)ds,

where,

G2(t, s) =

s∫
t

exp

(
u∫
t

b(v)dv +
s∫
u
a(v)dv

)
du+

t+T∫
s

exp

(
u∫
t

b(v)dv +
s+T∫
u
a(v)dv

)
du(

exp

(
T∫
0

a(u)du

)
− 1

)(
exp

(
T∫
0

b(u)du

)
− 1

) .
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Corollary 2.2. [22] The Green’s function G2 satisfies the following proprieties

G2(t, t+ T ) = G2(t, t), G2(t+ T, s+ T ) = G2(t, s),

∂G2(t, s)

∂t
= −b(t)G2(t, s) + F (t, s)

∂G2(t, s)

∂s
= a(s)G2(t, s)− E(t, s).

where F (t, s) =

exp

(
s∫
t

a(v)dv

)
exp

(
T∫
0

a(v)dv

)
− 1

, E(t, s) =

exp

(
s∫
t

b(v)dv

)
exp

(
T∫
0

b(v)dv

)
− 1

.

Lemma 2.4. [17] Let A =
T∫
0

p(u)du,B = T 2 exp

(
1

T

T∫
0

ln(q(u))du

)
. If A2 ≥ 4B, then we

have

min


T∫
0

a(u)du,

T∫
0

b(u)du

 ≥ 1

2

(
A−

√
A2 − 4B

)
:= l

max


T∫
0

a(u)du,

T∫
0

b(u)du

 ≤ 1

2

(
A+

√
A2 − 4B

)
:= L

Corollary 2.3. [22] The functions G2, E and F satisfy

m2 =:
T

(eL − 1)2
≤ G2(t, s) ≤

T exp

(
T∫
0

p(u)du

)
(el − 1)2

:=M2

E(t, s) ≤ eL

el − 1
, F (t, s) ≤ eL.

Lemma 2.5. [3] Suppose that the conditions of Lemma 2.2 are satisfied and h ∈ PT .
Then the equation

x′′′(t) + p(t)x′′ + q(t)x′ + r(t)x(t) = h(t),

has a T-periodic solution. Moreover, the periodic solution can be expressed by

x(t) =

t+T∫
t

G(t, s)h(s)ds,

where

G(t, s) =

t+T∫
t

G2(t, σ)G1(σ, s)dσ

Corollary 2.4. [3] The Green’s function G satisfies the following properties:

G(t+ T, s+ T ) = G(t, s), G(t, t+ T ) = G(t, t) exp(ρT ),
∂G(t, s)

∂s
= ρG(t, s)

∂G(t, s)

∂t
=(exp(−ρT )− 1)G1(t, t)G2(t, s)− b(t)G(t, s) +

t+T∫
t

F (t, σ)G1(σ, s)dσ,
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and

m ≤ G(t, s) ≤M,

where

m =
T 2

(exp(l)− 1)2(exp(ρT )− 1)
,M =

T 2 exp(ρT +
T∫
0

a(v)dv)

(exp(l)− 1)2(exp(ρT )− 1)
.

In the sequel, we need the following Lebesgue dominated convergence theorem.

Theorem 2.2. [6] Let Ω be a measurable set of R and (fk) be a sequence in L1(Ω,R)
space such that: fk(x) −→ f(x) a.e and there exists a function g in L1(Ω,R) such that
|fk(s)| ≤ g(s), then f ∈ L1(Ω,R) and∫

Ω
|fk − f | ds−→0, when , k −→ ∞.

We end this section by stating the Schauder’s fixed point theorem.

Theorem 2.3. [25] Let C be a nonempty bounded, closed and convex subset of a Banach
space E and T is a continuous operator from C into itself. If T (C) is relatively compact,
then T has a fixed point.

3. Main result

It is easy to check, under the above assumptions, that x is a solution of (5) in P 2
T if and

only if x is the solution of the following integral equation in P 2
T (see [3])

x(t) =

t+T∫
t

G(t, s)f
(
s, x(s), x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s))

)
ds. (6)

Under the hypothesis (H1 − H4) and the previous lemmas and corollaries, we will make
use of Schauder fixed point theorem to prove the following main result.

Theorem 3.1. If the hypotheses (H1 −H4) hold, and under the following condition:

k = k6(MT + 2γ) < 1 (∗)

Then, the neutral integro-differential equation (6) has a positive periodic solution in C2(R).

Proof. Solving Equation (6) is equivalent to finding a fixed point of the operator A such
that A are defined by the following expression

Ax(t) =

t+T∫
t

G(t, s)

[
f
(
s, x(s), x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s)

)]
ds.

It is clear that the operator A is well defined from P 2
T into itself, moreover

(Ax)′(t) =

t+T∫
t

∂G(t, s)

∂t

[
f(s, x(s), x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s))

]
ds.

(Ax)
′′
(t) =

t+T∫
t

∂2G(t, s)

∂t2

[
f(s, x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s))

]
ds.
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From Corollary 2.4, we obtain

∂2G(t, s)

∂t2
= (exp(−ρT )− 1)

(∂G1(t, t)

∂t
+
∂G1(t, t)

∂s

)
︸ ︷︷ ︸

=0

G2(t, t) +G1(t, t)
∂G2(t, s)

∂t



−b′(t)G(t, s)− ∂G(t, s)

∂t
b(t)+F (t, t+T )G2(t+T, s)−F (t, t)G1(t, s)+

t+T∫
t

F (t, σ)G1(σ, s)dσ

≤ (exp(−ρT )− 1)G1(t, t)
∂G2(t, s)

∂t
− b′(t)G(t, s)− ∂G(t, s)

∂t
b(t)

+F (t, t+ T )G2(t+ T, s)− F (t, t)G1(t, s) +

t+T∫
t

F (t, σ)G1(σ, s)dσ

and from Corollary 2.2, we obtain

∂F (t, s)

∂t
= −a(t)F (t, s).

The proof is split into three steps.
Step I. There exists α > 0 such that A transforms C = {x ∈ P 2

T , ∥x∥ ≤ α} into itself . It
is clear that C is nonempty, bounded, convex and closed.
To simplify notations, we introduce the constants

λ = max
t∈[0,T ]

|ϕ(t)|, k5 = max{k1, k2}, k6 = max{k3, k4, 2k5}, γ = max{M3,M4}.

Moreover, for all x ∈ C and t ∈ [0, T ], we have

|Ax(t)| =

∣∣∣∣∣∣
t+T∫
t

G(t, s)[f(s, x(s), x(s− τ(s)), x′(s− τ(s)) + x′′(s− τ(s)))]ds

∣∣∣∣∣∣
≤

t+T∫
t

|G(t, s)|

[
|ϕ(s)|+ k1|x(s)|+

2∑
i=0

ki+2|x(i)(s− τ(s))|

]
ds

≤MT (∥ϕ∥∞ + (k1 + k2)∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞)

≤MT (∥ϕ∥∞ + 2k5∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞)

≤MT (λ+ k6∥x∥),

(7)

and

|(Ax)′(t)| =

∣∣∣∣∣∣
t+T∫
t

∂G(t, s)

∂t
[f(s, x(s), x(s− τ(s)), x′(s− τ(s)) + x′′(s− τ(s)))]ds

∣∣∣∣∣∣
≤

t+T∫
t

|∂G(t, s)
∂t

|

[
∥ϕ∥∞ + k1|x(s)|+

2∑
i=0

ki+2|x(i)(s− τ(s))|

]
ds
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≤
t+T∫
t

|∂G(t, s)
∂t

|[∥ϕ∥∞ + (k1 + k2)∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞

≤ (1− exp(−ρT ))M1M2 + ∥b∥∞M + TMeL]︸ ︷︷ ︸
=M3

×[∥ϕ∥∞ + 2k5∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤M3 × (λ+ k6∥x∥)
(8)

|(Ax)′′(t)| =

∣∣∣∣∣∣
t+T∫
t

∂2G(t, s)

∂t2
[f(s, x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s))]ds

∣∣∣∣∣∣ .
≤

t+T∫
t

|∂
2G(t, s)

∂t2
|

[
|ϕ(s)|+ k1|x(s)|+

2∑
i=0

ki+2|x(i)(s− τ(s))|

]
ds

≤
t+T∫
t

|∂
2G(t, s)

∂t2
|[∥ϕ∥∞(k1 + k2)∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤
∣∣∣(1− exp(−ρT ))[(∂G(t, t)

∂t
+
∂G(t, s)

∂s
)G2(t, s) +G1(t, t)

∂G2(t, s)

∂t

− (b)′(t)G(t, s)− (b)(t)
∂G(t, s)

∂t
+ F (t, t+ T )G2(t+ T, s)− F (t, t)G1(t, s)

+

t+T∫
t

∂F (t, σ)

∂t
G(σ, s)dσ]

∣∣∣[∥ϕ∥∞(k1 + k2)∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤
∣∣∣(1− exp(−ρT ))G1(t, t)

∂G2(t, s)

∂t
− (b)′(t)G(t, s)− (b)(t)

∂G(t, s)

∂t

+ F (t, t+ T )G2(t+ T, s)− F (t, t)G1(t, s) +

t+T∫
t

∂F (t, σ)

∂t
G(σ, s)dσ)

∣∣∣
× [∥ϕ∥∞(k1 + k2)∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤ [2M1M2(1− exp(−ρT ))∥b∥∞ + eL(∥b∥∞TM +M1 +M2 + 1) + ∥b∥2∞M

+ TM1∥
∂F

∂t
∥∞]× [∥ϕ∥∞ + 2k5∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤ [2M1M2(1− exp(−ρT ))∥b∥∞ + eL(∥b∥∞TM +M1 +M2 + 1) + ∥b∥2∞M
+ TM1∥a∥∞eL]× [∥ϕ∥∞ + 2k5∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤M4 × [∥ϕ∥∞ + 2k5∥x∥∞ + k3∥x′∥∞ + k4∥x′′∥∞]

≤M4 × (λ+ k6∥x∥)
(9)

such that M4 = 2M1M2(1− exp(−ρT ))∥b∥∞ + eL(∥b∥∞TM +M1 +M2 + 1) + ∥b∥2∞M +
TM1∥a∥∞eL.
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Hence, by (7), (8), (9), we obtain

∥A(x)∥ ≤ (MT +M3 +M4)× (∥ϕ∥∞ + k6∥x∥)
≤ (MT + 2γ)× (λ+ k6∥x∥)

We deduce that, A transforms C into itself if

∥A(x)∥ ≤ (MT + 2γ)× (λ+ k6∥x∥)
≤ (MT + 2γ)× (λ+ k6α)

≤ α.

which implies, under the condition (∗), that

λ× (MT + 2γ)

1− k
≤ α

Then, A transforms C into itself for

α =
λ× (MT + 2γ)

1− k

Step 2. The operator A is continuous. Let (xn)n ∈ C be a convergence sequence to x ∈ C,

which implies that (x
(i)
n ) converges to x(i) (i = 0, 1, 2) in the space C([0, T ], [−α, α]). Since

f are uniformly continuous on the compact set [0, T ] × [−α, α]5, then the sequence ,
f
(
s, xn(s), x(s− τ(s)), x′n(s− τ(s)), x′′n(s− τ(s))

)
converges to f

(
s, x(s), x(s− τ(s)), x′(s−

τ(s)), x′′(s− τ(s))
)
in C([0, T ],R). It follows that,∥∥∥∥Axn −Ax

∥∥∥∥ ≤M

(
∥f
(
s, xn(s), x(s− τ(s)), x′n(s− τ(s)), x′′n(s− τ(s))

)
− f

(
s, x(s), x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s))

∥∥
∞

)
.

Which implies that (Axn) converges to Ax and the operator A is continuous.
Step 3. A(C) is relatively compact, it is clear that A(C) is equibounded.
Now, to show that A(C) is equicontinuous, take t1 and t2 in I = [0, T ].
Let H(s) = f

(
s, x(s), x(s− τ(s)), x′(s− τ(s)), x′′(s− τ(s))

)
, by the assumption (H2), we

have

∥H∥∞ ≤ λ+ k6α.

It follows that

|Ax(t1)−Ax(t2)| =

∣∣∣∣∣∣
t1+T∫
t1

G(t1, s)H(s)ds−
t2+T∫
t2

G(t2, s)H(s)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t1+T∫
t1

G(t1, s)H(s)ds−
t1+T∫
t1

G(t2, s)H(s)ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t1+T∫
t1

G(t2, s)H(s)ds−
t2+T∫
t2

G(t2, s)H(s)ds

∣∣∣∣∣∣
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≤
t1+T∫
t1

|G(t1, s)−G(t2, s)||H(s)|ds+ |
t2∫

t1

G(t2, s)H(s)ds

+

t2+T∫
t2

G(t2, s)H(s)ds+

t1+T∫
t2+T

G(t2, s)H(s)ds−
t2+T∫
t2

G(t2, s)H(s)ds|

≤
t1+T∫
t1

|G(t1, s)−G(t2, s)||H(s)|ds+
t2∫

t1

|G(t2, s)H(s)|ds

+

t2+T∫
t1+T

|G(t2, s)H(s)|ds

≤ ∥H∥
t1+T∫
t1

|(G(t1, s)−G(t2, s)|ds

+ ∥H∥
t2∫

t1

|G(t2, s)|ds+ ∥H∥
t1+T∫

t2+T

|G(t2, s)|ds

≤ ∥H∥
t1+T∫
t1

|G(t1, s)−G(t2, s)|ds+ 2M∥H∥|t1 − t2|

≤ (λ+ k6α)

t1+T∫
t1

|G(t1, s)−G(t2, s)|ds

+ 2M (λ+ k6α) |t1 − t2|.

(10)

Using a similar argument as above, we prove that

|A′x(t1)−A′x(t2)| ≤ ∥H∥
t1+T∫
t1

∣∣∣∣∂G(t1, s)∂t
− ∂G(t2, s)

∂t

∣∣∣∣ ds
+ ∥H∥

t2∫
t1

∣∣∣∣∂G(t2, s)∂t

∣∣∣∣ ds+ ∥H∥
t1+T∫

t2+T

∣∣∣∣∂G(t2, s)∂t

∣∣∣∣ ds
≤ ∥H∥

t1+T∫
t1

∣∣∣∣∂G(t1, s)∂t
− ∂G(t2, s)

∂t

∣∣∣∣ ds
+ 2M3∥H∥|t1 − t2|

≤ (λ+ k6α)

t1+T∫
t1

∣∣∣∣∂G(t1, s)∂t
− ∂G(t2, s)

∂t

∣∣∣∣ ds
+ 2M3 (λ+ k6α) |t1 − t2|.

(11)
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Also, we have

|A′′x(t1)−A′′x(t2)| ≤ ∥H∥
t1+T∫
t1

∣∣∣∣∂2G(t1, s)∂t2
− ∂2G(t2, s)

∂t2

∣∣∣∣ ds
+ ∥H∥

t2∫
t1

∣∣∣∣∂2G(t2, s)∂t2

∣∣∣∣ ds+ ∥H∥
t1+T∫

t2+T

∣∣∣∣∂2G(t2, s)∂t2

∣∣∣∣ ds
≤ ∥H∥

t1+T∫
t1

∣∣∣∣∂2G(t1, s)∂t2
− ∂2G(t2, s)

∂t2

∣∣∣∣ ds
+ 2M4∥H∥|t1 − t2|

≤ (λ+ k6α)

t1+T∫
t1

∣∣∣∣∂2G(t1, s)∂t2
− ∂2G(t2, s)

∂t2

∣∣∣∣ ds
+ 2M4 (λ+ k6α) |t1 − t2|.

(12)

Now, let ε > 0, since the functions G(t, s) , ∂G(t,s)
∂t and ∂2G(t,s)

∂t2
are uniformly continuous

on the compact set [0, T ]× [0, 2T ], then there exists δ1 > 0 such that, if |t2 − t1| ≤ δ1, we
have for all s ∈ [0, 2T ]

|G(t2, s)−G(t1, s)| ≤
ε

2T (λ+ k6α)
,∣∣∣∣∂G(t1, s)∂t

− ∂G(t2, s)

∂t

∣∣∣∣ ≤ ε

2T (λ+ k6α)
,∀ s ∈ [0, 2T ].

and ∣∣∣∣∂2G(t1, s)∂t2
− ∂2G(t2, s)

∂t2

∣∣∣∣ ≤ ε

2T (λ+ k6α)
, ∀ s ∈ [0, 2T ].

Then from (10), (11) and (12), if |t2 − t1| ≤ δ = min(δ1, δ2, δ3, δ4), where
δ2 =

ε
4M(λ+k6α)

,

δ3 =
ε

4M3(λ+k6α)
,

δ4 =
ε

4M4(λ+k6α)
.

We deduce, for i = 0, 1, 2, that

|Ax(i)(t2)−Ax(i)(t1)| ≤ ε.

Consequently, the set A(C) is equicontinuous.
Hence, by Theorem (2.1), A(C) is relatively compact.
The proof of Theorem 3.1 then follows from Schauder’s fixed point theorem. □

4. Application

Consider the differential equation:

x′′′(t)+3x′′(t)+
5

4
x′(t)+

1

2
x(t) = cos(6t)+ln

1 +

(
kx(t) + k

2∑
i=0

x(i)(s− τ(s))

)2
 (13)
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Hence, by using the notations of Theorem 3.1, we have
p(t) = 3, q(t) = 5

4 , r(t) =
1
2 ,T = 2π, τ(t) = sin t+ 2, δ = 1, ϕ(t) = cos(6t) and

f(t, u1, u2, u3, u4) = cos(6t) + ln(1 + (ku1 + ku2 + ku3 + ku4)
2).

Doing straightforward computations, it is easy to obtain
a(t) = b(t) = 1

2 , a1(t) = 1, a2(t) =
1
4 , λ = 1, ρ = 2.

E(t, s) = F (t, s) =
e

1

2
(s−t)

(eπ − 1)
, L = 5π, l = π,M =

4π2e5π

(eπ − 1)2(e4π − 1)
,

M1 =
e4π

(e4π − 1)
,M2 =

2πe6π

(eπ − 1)2
,M3 =

2(e4π − 1)πe6π + 2π2e5π

(e4π − 1)(eπ − 1)2

M4 =
π2e5π(1 + 4πe5π) + e5π(eπ − 1)2(2e4π + πe4π − 1) + 2πe6π(e4π − 1)(2e5π − 1)

(e4π − 1)(eπ − 1)2

and k1 = k2 = k3 = k4 = k5 = |k|, k6 = 2|k|, γ =M4.
therefore, the inequality in Theorem 3.1 takes the form

4|k|π
2e5π(1 + 4πe5π) + e5π(eπ − 1)2(2e4π + πe4π − 1) + 2πe6π(e4π − 1)(2e5π − 1)

(e4π − 1)(eπ − 1)2
+

4|k| 4π3e5π

(e4π − 1)(eπ − 1)2
< 1.

(14)

Then by Theorem 3.1, we conclude, from the inequality (14), that the third order nonlinear
delay differential equation (13) has a solution u ∈ C3(I,R) if

|k| < 9.57× 10−15.

5. Conclusions

In this paper, we have considered a general form of the third-order nonlinear delay dif-
ferential equation, where the derivatives x′ and x′′ appear in the nonlinear function. The
existence of a periodic solution has been investigated, under fairly simple conditions, by
using a new generalization of Ascoli-Arzelà theorem and Schauder’s fixed point theorem.
The advantage of using the new generalization of Ascoli-Arzelá theorem given in [4] is
that it allows us to study the existence of the solution to the third order delay differential
equations where the derivatives x′, x

′′
appear in the nonlinear function, while the deriva-

tives x′, x
′′
does not appear in the nonlinear functions in the previous studies of the third

order delay differential equations (see for example [1, 2, 3, 12, 17, 20, 22]) which they have
used only the Ascoli-Arzelá theorem in the space of continuous functions. It is important
to point out that the general form of the third-order nonlinear delay differential equation
(5) contains as particular cases many important integral and functional equations in the
literature. Specifically, the particular functional delay τ(t) = t−x(t) or the nonlinear func-
tion contains the term x(x(t)) which called iterative differential equation (see for example
[5, 13, 26]). Finally, an example is provided to illustrate our main result.
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