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CONTINUITY AND BOUNDEDNESS OF LINEAR OPERATORS ON
NEUTROSOPHIC 2-NORMED SPACES

SAJID MURTAZA ™, ARCHANA SHARMA ' AND VIJAY KUMAR/!, §

ABSTRACT. In present work, we aim to introduce certain concepts of continuity that is
weak, strong and sequentially continuity of linear operators defined on neutrosophic 2-
normed spaces. We provide an example that shows sequential continuous linear operators
may not be strongly continuous on these spaces. Later, we define weakly and strongly
boundedness of an operator on neutrosophic 2-normed spaces and study some relevant
connections between continuity and boundedness.
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1. INTRODUCTION

In our real life there exist some classes such as the class of beautiful women, the class of
intelligent students and the class of tall persons which cannot be fit in the framework of
crisp sets. Therefore to explore these type of phenomena’s, Zadeh [33] introduced the idea
of fuzzy sets by defining the degree of a membership function. Later, the theory of fuzzy
sets has grown up along with time and many fuzzy analogues of classical concepts have
came into existence. One among these is the fuzzy topology which has wide applications
in quantum physics (see [11], [12] and [13]). While studying fuzzy topological space in
1984, Katsaras [19] introduced the concepts of fuzzy semi norm, fuzzy norm and studied
some properties of fuzzy semi normed and fuzzy normed spaces. Xiao and Zhu [32] define
a fuzzy norm of a linear operator and studied the space of all bounded linear operators
endowed with this fuzzy norm. Subsequently, Bag and Samanta [5-6] introduced strong
and weak boundedness of fuzzy bounded linear operators and studied their relations with
fuzzy continuity. For more information in this direction, we refer to the reader [7] and [8].

Atanassov [2-4] first observed that the Zadeh’s idea of fuzzy sets is not sufficient to
work on some problems and therefore he generalized it by joining the non-membership
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function along with a membership function. He called it as intutionistic fuzzy set. These
sets are further used to define intutionistic topological spaces, intutionistic normed spaces
and intutionistic fuzzy 2-normed spaces. For a wide view on these spaces, we quote [14],
18], [17] [9], [10], [22] and [26].

There are situations which are partially true, partially false and partially indeterminacy
(neither true nor false) which cannot be modeled by intutionistic fuzzy sets. So, in view
of this, Smarandache [30-31] generalized the intutionistic fuzzy sets and define the neutro-
sophic set by adding the indeterminacy function to the membership and non-membership
function. Recently, Kirigci and Simsek [20] used neutrosophic sets to define neutrosophic
normed spaces and studied statistical convergence in these spaces. For some further works
on neutrosophic normed spaces, we refer to [27], [16], [21],[23-25], [28] and [29]. In present
study, we consider neutrosophic normed spaces and define certain kinds of continuity and
boundedness of an operator over neutrosophic 2-normed spaces. We shall also study some
interesting relationships among these notions.

2. PRELIMINARIES

This section begins by recalling some definitions and results in concern of present study.

For any set S, the neutrosophic set A of S is defined by A = {(s, Ga(s), Ba(s),Ya(s))}s €
S}, where the functions G4 : S — [0,1] and B4 : S — [0,1], Y4 : S — [0, 1] respectively
denote the degree of membership function, indeterminacy function and non-membership
function of the element of s € S and for every s € S, 0 < G(s) + B(s) + Y(s) < 1.
Definition 2.1 [1] Let I = [0,1]. A function o : I x I — I is said to be a t—norm for all
f,9,h,i € I we have:

(i) fog=gof;

(ii)fo(goh) = (fog)oh;

(iii) o is continuous;

(iv) fol=f forevery fe€][0, 1] and

(v) fog < hoiwhenever f <hand g <i.
Definition 2.2 [1] Let I = [0,1]. A function ¢ : I x I — I is said to be a continuous
triangular conorm or t—conorm for all f, g, h,i € I we have:

(i) feg=gof;

(i) o (goh) = (f o) o b

(iii) ¢ is continuous;

(iv) fo 0= f for every f € [0,1]

(v) fog < hoiwhenever f <hand g <.

We now recall the concept of 2-norm given in [15].
Definition 2.3 Let F' be a d—dimensional real vector space, where 2 < d < co. A 2—norm
on F'is a function ||.,.|| : F' x F — R fulfilling the below listed requirements:

For all p,q € F', and scalar «, we have

(i) ||p, ¢l| = 0 iff p and ¢ are linearly dependent;

(i) llp, qll = llp, all;

(iii)[|ap, ql| = [[[|[|p, ql| and

() llp. g + 7l < llp, all + [lp, 7l-

The pair (F,||.,.||) is known as 2—normed space in this case.

Let F =R? and for p = (p1,p2) and q = (q1,¢2) we define [|p, ql| = |p1g2 — p2q1, then
lp, ¢l is a 2— norm on F = R2,

Kirigci and Simsek [20] recently defined neutrosophic normed space where as the concept
has been extanded for neutrosophic-2-normed linear spaces (briefly abbreviated as N —
2 — NS) in [21] as follows.
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Definition 2.4 A six-tuple V = (F, G, B,Y, 0,¢) where F' is a vector space, o is a t—norm,
oisat—conorm and G, B,Y are fuzzy sets on F2x[0, 1] (G is the membership function, B is
the indeterminacy function and Y is the non-membership function) is called a neutrosophic
2—norm space (briefly N —2—NS) if for every p,q,w € V, p, u > 0 and ¢ # 0 the following
conditions are satisfied.
(1) 0 < G(p,q;p) <1,0< B(p,g;p) <1 and 0 <Y (p,q;p) <1 for every p € RT;
(i) 0 < G(p,g;p) + B, ;) + Y (P, 45 p) < 3;
(iii) G(p,q; p) = 1 iff p, q are linearly dependent;
(iv) G(sp, ¢; p) = G(p,q; ) for each ¢ # 0;
(v) G(p,q; p) © Gp,w; p) < G(p, g+ w;p+ p);
(vi) G(p,q;.) : [0,00) — [0, 1] is a non-decreasing function that runs continuously;
(vii) lim G(p,q;p) =1 ;
pP—00
(vil)) G(p, 43 p) = G(q,p; p)
(ix) B(p,q;p) = 0 iff p, q are linearly dependent;
(x) B(sp,¢; p) = B(p, ¢; ) for each ¢ 7 0;
(xi) B(p,q;p) © B(p,w; ) > B(p,q + w;p + p);
(xii) B(p,q;.) : [0,00) — [0, 1] is a non-increasing function that runs continuously;
(xiii
(
(
(
(
(
(
(

)
xiv) B(p,q; p) = B(q, p; p)

1) Y(p,q; p) = 0 iff p, g are linearly dependent;
xv)Y(sp, ¢; p) =Y (p, q;{5) for each ¢ # 0;
vi) Yip,q;p) oY (p,wipn) = Y (p, g +w;p+ p);

xvii) Y(p,q;.) : [0,00) — [0, 1] is a non-increasing function that runs continuously;

xviil) lim Y(p,q;p) =0

pP—ro0

xix) Y(p,q;p) = Y (q,p; p)

(xx) if p <0, then G(p,q;p) =0, B(p,q;p) =1, Y(p,q;p) = 1.
In this case, we call No(G, B,Y) a neutrosophic 2—norm on F.

We next give the notions of convergence in neutrosophic 2-norm space.
Definition 2.5 [21] Let V be a N —2 — NS. Choose 0 < € < 1 and p > 0. A sequence
(vg) in a V is said to be convergent if 3 a positive integer m and vy € F s.t. G(vp —
vo,w; p) > 1 — € and B(vg — v, w; p) < €, Y (v —vo,w;p) < € for all k > m and w € V.
This is equivalently to say limy_,oo G(vk — vo, w; p) = 1, limg_o0 B (v — v, w; p) =0 and
limg 00 Y (v — vo,w; p) =0 . In this case, we write Nao(G, B,Y) — limg_, o0 v = vp.

>

3. MAIN RESULTS

Let, U = (X,G1, B1,Y1,01,01) and V = (Y, Ga, By, Ys,02,02) be two neutrosophic 2-
normed spaces, where X and Y are linear space over R.
Definition 3.1 A mapping T : U — V is said to be neutrosophic continuous at uy =
(ug,ud) € X*iffore>0andn>0(0<n<1),35=205(ne€ >0and{=¢@n,e >0st,
YV u = (u1,uz) € X% we have

Gy <<U17U2) - (u?,ug),d) > ¢ and By <(U1,U2) — (u?,u%),é) <1-E¢,

Yi ((u17u2) - (u(l)?u8)76> <1-¢,
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Go (T(Ul,UQ) - T(u?,u%),e) >n and By <T(U1,U2) — (u?,u%),e) <1l-m,

Y2<T(u1,uQ) — (u?,u%),e) <1l-—n.
This is equivalent to say that for e > 0 and 7 > 0 (0 < n < 1), 30 = §(n,¢) > 0 and
E=¢€Mmye) > 058tV u=(u,u) € X2
G1(u —up, ) > & and By(u —up,0) <1—¢, Yi(u—wup,d) <1—¢,

= Gy (T(u) - T(uo),e> > 1 and By (T(u) - T(uo),e) <1-n,

Ys (T(u) — T(up), e> <1-1.

T :U — V is said to be neutrosophic continuous on U if T' is neutrosophic continuous at
each point of X2.

Definition 3.2 A map 7 : U — V is said to be strongly neutrosophic continuous at
ug = (u?,ug) € X%iffore>0, 35>0stVu=(u,uz) € X?

Ga(T(u) — T(uo), €) > G (u — ug, d) and
BQ (T(u) — T(’U,O), 6) S Bl(u — Up, (5),
Y2 (T(u) — T(uo), €) < Yi(u— uo,d).

T : U — V is said to be strongly neutrosophic continuous on U if T is strongly neutrosophic
continuous at each point of X?2.

Definition 3.3 A map T : U — V is said to be weakly neutrosophic continuous at
up = (ul,ud) € X2 if for e >0 and n € (0,1), 35 = (n,€) > 08tV u=(u,ug) € X2,

Gi(u—wup,d) > nand By(u—up,0) <1—mn, Yi(u—1up,d) <1—n

= Go(T(u) — T(up),€) > n and Bo(T(u) — T'(up),€) <1—mn,
Yo(T (u) — T'(up),€) <1—n.

We say T : U — V weakly neutrosophic continuous on U if T is weakly neutrosophic
continuous at each point of X?2.

Definition 3.4 A map T : U — V is said to be sequentially neutrosophic continuous at
ug = (uf,ud) € X? if for any sequence (uy) with uj, — uo implies T'(uy,) — T'(uo) i.e, for
allr >0

lim Gy (ug —uo,7) =1 and lim Bj(up —uo,7) =0, lim Yj(ur —ug,r) =0,
k—o0 k—o0 k—o0

= lim Go(T'(ug) — T(ug),r) = 1 and lim Bo(T (ug) — T'(ug),r) =0,

k—o0 k—o0

kli_)n(r)lng(T(uk) —T(up),r) =0.

T : U — V is said to be sequentially neutrosophic continuous on U if T' is sequentially
neutrosophic continuous at each point of X2.

Theorem 3.1 If amap T : U — V is strongly neutrosophic continuous then it is sequen-
tially neutrosophic continuous.
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Proof Let T : U — V be strongly neutrosophic continuous. We shall show that T is se-
quentially neutrosophic continuous. Let ug = (ul,u9) € X? be any point. Since T : U — V
is strongly neutrosophic continuous so for each € > 0, 36 > 0s.t V u = (ug, up) € X2

Go(T(u) — T'(up),€) > G1(u — ug,d) and Ba(T(u) — T(ug),€) < By(u — ug, ), 0
Yo(T (u) — T'(ug), €) < Yi(u— up, )
Let (uy) be any sequence in U s.t up — up w.r.t Ni(G1, By, Y1), then

lim Gi(ug —ug,7) =1 and lim Bj(ur —ug,r) = lim Yj(ug — up,7) = 0. (2)
k—o0 k—o0 k—o0
Now, by (3)

Go(T (u) — T(up),€) > Gy(ug — ug,0) and Bo(T(ug) — T'(up),€) < By(ug — ug, ),
Yg(T(uk) — T(uo), 6) S Yl(uk — U, 5)
and therefore,
klim GQ(T(uk) — T(UO), 6) > klim Gl(uk — Uy, 5) =1 by (4)
—00 —00
This gives klim Go(T(ug) — T(ug),€) = 1.
—00
Further,
klim By (T(ug) —T(ug),€) < klim Bi(ug — ug,6) =0 and
—00 —00
khm }/é(T(Uk) — T(UO), 6) < khm Yl (uk — UO,(S) =0.
— 00 — 00
This shows that T'(ug) — T'(ug) w.r.t Nao(Ga, Be,Y2) and therefore T' is sequentially neu-
trosophic continuous. [
The converse of above result is not true in general as can be seen from the following ex-
ample.
Example 3.1 Let (X, ||.||2) be a 2-normed space. Define the t—norm, t—conorm, G1, Ga, By,
B, & Y1,Ys by
aob=min{a,b}, aob=max{a,b} for a,b € [0,1];

; (s u)l
G (w2, ) = e B (ur,un, 8) = T2
120 = S Tl ) T 5wl
Ut, U
5’1(“1,%62,5):”(152)"2;
: oz, uo)]

Ga(ur,ug, €) = Bo(ui,ug,€) =

€+ alluy, uz|2

al[(ur, u2) |2
YQ(Ul,’U,Q,G): H( 1; )H

where e >0, 36 >0, a >0, and u = (ur,us) € X?, then U = (X2,G1, By, Y1,0,0), V =

(X2,Gy, By, Y, 0,0) are neutrosophic 2-normed linear spaces. Define amap T : U — V by
4

T(u) = 1172 where u = (u1,u2) € X2. We first show that T is sequentially neutrosophic
u

continuous. Let ug € U and (ug) be any sequence in U s.t (u) — up w.r.t N1(G1, By, Y1).
Then for any § > 0, we have

€+ af|(ur, uz)|l2’

lim Gi(ux —up,d) =1 and lim Bj(ug — up,d) = lim Yj(ug — up,d) = 0.
k—oo k—o0 k—o0

5 _ _
= lim ———— =1 and lim —Huk uoll2 = lim 7”1% uoll2

= =0
k—oo 0 + HUk — UOHQ k—oo 0 + ||uk — u0||2 k—o0 0 ’

and therefore we have
lim [|ug — ull2 = 0. (3)
k—oo
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€ €

Now consider, Go(T (u) — T'(up), €) = e+ al|(T(ug) — T(up)ll2 N

4 4
uk U,

0
€T ANTRZ T Tra?

2
ell1+uglla 1+ w2

<u§<1 ) —ud(1 + ui))

- ell1 + uglla 1T+ ugll2
el aglle 11+ uglle + allug + upud — ug — ugug 2
_ ell1 + ujll2 11+ ugll2
el uglle 11+ uglle A all(ur — o) (uk + o) (uf + uf) + ujug(ui — ug)ll
_ el| 1+ uilla 1T+ ugll2
et w2 lle 11+ wdlle + allug — uoll2 || (uk + uo)(uf + ud) + uiud(ug + uo)|2’
and therefore k11_>n010 Go(T(ug) — T'(up),€) = 1. by(5)

elll +uillz 11+ udll2 + o

2

Further,

4 4
U Ug

o 1+ui B 1+ug 9

Bo(T (ug) = T'(uo), €) = =

€T T T )

B aflup (14 ud) — ud(1+ u?)ll
€|l + u,i||2 11+ u%Hz + aHuﬁ(l + u%) — ug(l + u%)”g

o — v+ b} —

el gz 11+ e + allug — u + wjug — ugul2

_ o (s — o) (wk + uo) (uf + ) + ugug(ui — ug)|l2
ellL +uill2 11+ wugllz + ol (ur — wo) (up + uo) (uj; + ug) + wug(uj — ug)|2
_ aflur — wolla [ (ur + wo) (uf; + uf) + ujug (ur + uo)l2
ell1 +ugllz 11+ ugll2 + aflue — uoll2 [|(uk + wo)(uf + ug) + ufug(ur + uo)|l2
and thereforeklim By(T(uk) — T(ug),€e) = 0. by(5)
—00

Similarly, we have klim Yo(T (ug) — T(ug),€) = 0, and therefore T'(ur) — T(ug) w.r.t
— 00

N3(Ga, Ba,Ys). This shows that T is sequentially neutrosophic continuous on U. We claim
that T is not strongly neutrosophic continuous on U. Suppose that T is strongly continuous

on U. Let € > 0 be given and up = (uf,u3) € X2 Since T is strongly neutrosophic

continuous so 3§ > 0 s.t V u = (ug,uz) € X2. Go(T(u) — T(up),€) > G1(u — ug, )

el + Pl |1 + |l
ell1+u?[|2 [T+ ull2 + eflu = uoll2 [|(u + uo)(u? + ug) + u?ug(u + uo) |2
1)
Z N
0+ [Ju — uoll2
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and
By(T(u) — T(ug), €) < Bi(u — ug,9)
N allu —ugll2 [|(v* + ug) + u?ug(u + uo) |2
e 11 +u?|l2 11+ ufll2 + allu — uoll2 (v + uo)(u? + ug) + u?u(u + uo) |2
[lu — uol|2
~ 0+ flu —uoll2
ad|lu—uoll2 [Ju+uoll2 lu® +ug + u’uglla + allu — uoll2 lu+ uoll2 [[u* + ug + u?ug|2
< e[+ u?ll2 11+ upllaflu — uoll2 + allu — uolla lu+uoll2 [|u* + ug + wug|l2
= adlu — uollallu + uoll2 [[u* + uf + v?uglle < €1 +w?|l2 |1+ ugll2 lu—uoll2
el|1 + w3 (|21 4+ wgll2 flu —uoll
allu —ugll2 [lu+uoll2 |u? + ug + u?ug|2

=<

_ ell1+ u?[l2]]1 + w2 (4)

allu + uollz [[u? + uf + uPufll2”
Yo (T (u) — T(up), €) < Yi(u — ug,6)

_, ollT(u) = T(uo)ll2 _ flu— uoll2

€ - 1)
Sof| < g
(0] — =[lU — U
T+u2 1+ud|, o ol
afut(1+uf) —ug(l+u?)]a e
5 5 < <|lu = uoll2
114+ u?l|2 (11 + ugll2 d

= 5a||u4 — ué + u4u(2) - u3u2||2
< ellu —uoll2 |1+ uZll2 11+ w?|l2
= dal|(u® — ug) (u® + up) + v ug(u® — ug) |2
< ellu—ull2 11+ udll2 1T+ w2
= dorflu — ugll [lu+uoll2 |u® + uf + uug|l2
< ellu—ugll2 1+ uZlla 1T+ u?2
€ 1 +uglle 11 +w?]l

=< — )
a[lu+ uolle [[u? 4 uf + u?ugls

Hence, in all cases

€ I +uglls I1+wu

=0< — .
o flu+uglle [u? + uf + uud|2

Let,

1+ ugll2 11+ u?||2
lu+uoll2 [[u? + uf + uuglle’

=

Lo |

uFug

then § = =4*. But 6* = 0 which is not possible. Hence, T" is not strongly neutrosophic

continuous on U. U

Theorem 3.2 A map T : U — V is neutrosophic continuous if and only if T is sequentially
neutrosophic continuous on U.

Proof Suppose T : U — V is neutrosophic continuous on U. We shall prove that T is

sequentially neutrosophic continuous. Let uyg € U be any element and u = (uy) be any
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sequence in U converging to ug w.r.t N1(Gy, B1,Y1) i.e. Ni(G1,B1,Y1) — klirn U = UQ.
— 00

Let e >0and 0 <n < 1.
Since, T': U — V is neutrosophic continuous at ug so 3§ = §(n,€) > 0 and & = £(n,€) > 0
s.t for all u = (uy,u2) € X? satisfying

Gi(u—wug,0) > & and Bi(u —wup,9) <1—=¢&, Yi(u—1up,0) <1-¢,
we have
Go(T(u) — T'(up),€) > n and
Ba(T(u) — T(ug), €) < 11, Yo(T(u) — T(uo),¢) < 1 — 7. )
Since N1(G1, B1,Y1) — klg](r)louk = ug, so 3 k1 € N s.t for all k > k1, we have

Gl(uk — UO,(5) > f and Bl(uk — uo,é) <1l-— f, Yl(uk — UO,(S) <1l-— f
so by (5) we have for all k& > ky
Go(T(ug) — T(ug),€) > n and
Ba(T(ug) — T(uo), €) < 1 =1, Ya(T(ur) — T(uo),€) < 1— 1.

This show that T'(ug) — T'(up) w.r.t No(Ga, B2, Y2) and therefore T' is sequentially neu-
trosophic continuous on U as ug was selected arbitrary.

Conversely, suppose that T : U — V is sequentially neutrosophic continuous on U. We
shall prove that T' is neutrosophic continuous on U. Suppose that T" is not neutrosophic

continuous on U. Then 3 ug € U s.t T is not neutrosophic continuous at ug. Then
Je>0andn>0s.tforany § >0 & 0 < & < 1 there exists u' € X? s.t

Gi(ug—u',8) > & and By(ug —u',6) <1—¢&, Yi(ug—u',6) <1—¢,
we have

Ga(T(up) — T(u'),€) < n and

/ , (6)
Bo(T(up) —T(u),e) >1—mn, Yo(T'(up) — T(u),e) >1—mn.
If we select £ =1 — %H and 6 = %‘H’ k=1,2,3,..., then we have a sequence (u;g) s.t
/ 1 1
— Upy —— 1-— d
G1<u0 uk’k—|—1>> k+1an .

By ug — u, ! < 1 Yy wg — u, 1 < !
A A 1 0T TR k1’

Ga(T(up) — T(u'),€) < n and
Bo(T(ug) — T (W), €) > 1—n, Ya(T(ug) — T(u),e) >1—n.

Further, for § > 0, we can choose k1 € N s.t for all £ > k1 we have ﬁ < 0.
Now,

but

and

i / ].
Gl(uo—uk,5)2G1<uo—uk, > >1—

kE+1 E+1

/ / 1 1
Bl(uo —uk,5) S Bl (uo - uk,k—|—]_) < m,

/ / 1 1 .
Yi(uo — uy, d) <Y1<u0—uk,k+1> < pq Using (7)
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will imply
lim Gy (up — u;c, 0)=1and lim B; (up — u%,&) = lim Y7 (uo— u;c, 9) =0.
k—o0 k—o0 k—o0

Thus show that (u;g) — ug w.r.t N1(G1, By, Y1).

Now by (6)

Ga(T (uo) — T(uy), ¢) < and
By(T(uo) — T(uj),€) > 1 n, Ya(T(uo) — T(up),€) > 1 — 1.

= lim Go(T(ug) — T(uy),€) # 1 and

k—o0

lim By (T (uo) — T(uy), €) # 0, Jlim Y5(T(uo) - T(uy,),€) # 0

k—o0

and so T(u;) - T(ug) w.r.t No(Ga, Ba,Y2). This show that T is not sequentially con-
tinuous as (u;{) — ug w.r.t Ni(G1, By,Y1) thus, we obtain a contradiction therefore T is
neutrosophic continuous on U. [J

4. NEUTROSOPHIC BOUNDED LINEAR OPERATORS

In this section, we define neutrosophic weak and strong boundedness of a linear operator
and study some relevant connections.
Definition 4.1 A linear operator T : U — V is said to be strongly neutrosophic bounded
on U if and only if 3 M > 0s.t for all u € U and n > 0

Go(T(u),n) > Gy <u ;\2) and Bo(T(u),n) < By (u AZ)
Ya(T(u),n) < V3 <u AZ)

Example 4.1 Let (X, ||.||2) be a 2-normed linear space. Define G1, G2, B1, B2 and Y1, Y,
as follows.

0 ifn >0
G1(u1,ug,n) = ¢ mroallusuzfl
) {O ifn<0;

O‘1”1‘01771/2”2 lf 77 > 0

a1 l|ug,uzl2 .
b2z qfp >0
Bi(uy,ug,m) = {17+a1||u1,u2||2 n

Y1 (u1,u2,m) :{ K

0 ifn<0; 0 ifn<0;
and
—— T ifn>0
Gao(uy,uo,m) = ntoae|lut,uszl2
2(u1, ug2,n) {O <0

azllu,uzll2 :
—2bzle ifp >0
Bs(uy,u2,m) = {8+a1||u17u2||2 ifz 0.

oalluruallz e S
}/é(ulau27n) = { K ;

0 iftn<0;

ifn > 0 and G1, Ga, B1, Be and Y7, Y5 are defined to be zero of n < 0, where o and s are
fixed positive real numbers and a; > «y. It is clear that (X, Gy, By, Y1, 0,¢) and (X, Ga, Ba,
Y5,0,0) become N — 2NLS. Define an operator 7' : (X,G1) — (X,G2) by T'(u) = lu,
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where u = (u1,u2) € X?, where [ # 0 € R is fixed, then it is easy to see that T is a linear
operator. Choose M s.t M > |l|. Then we have

GQ(T(ul,UQ),’I’]) > Gy (ul,u2, ]Z) W (ul,uQ) e X,V ne R, (8)

Since, u = (u1,uz) € U, M > |l| we have, oy M > as|l| since (o > ag > 0)

= o1 M||ur, uz|2 > ao|l|||ur, uz||2

= 1+ a1 M|juy, uzll2 > n + az|l||lur,uall2 ¥V 7 >0
N 1 S 1
N+ aolllllut, uallz — 7+ a1 M|lug, ual|2
0 - n
n+az|lur,uzllz — 0+ a1 M|ug, uzl2
n
n M
n+ aglur,ualls ~ { + oalug, ual2

GQ(T(U1,U2),7]) > Gy <U1,UQ, ]&) A n > 0 and u = (’U,l,’u,g) e X.

Further,

alll <M = as|lln < a1 Mn
= 042‘”77 + OélO[QM‘”HUl,UQHQ <arMn+ a1a2M|l|Hu1,u2H2
= azll|(n + cn M|y, uzll2) < arM(n + ag|lf|u1, uzl|2)
asll] < o M
N+ aoll|lur, uallz = 7+ a1 M|lug, ugl|2
g |lf||u1, uzl|2 o M |[ug, ugll2
N+ aoll[lur, uall2 = 7+ a1 M|lug, ual|2
aglllur, uslls . aafus, uz|)2
N+ aalllur, ualls = + aallug, uzll2

By(T(u1,uz2),n) < By (u1,u2, J\Z) Vou=(u,uz) € X,¥neR,
Similarly,

Yo (T (uy,uz2),n) <Y; <u1,u2, ]\Z) Vu=(u,uz) € X,¥nekR.
This shows that the operator T is strongly neutrosophic bounded.

Definition 4.2 A linear operator T : U — V is said to be weakly neutrosophic bounded
on U if for any n,0 <n <1, 3 M, >0s.tVuec U and £ >0

G1<u,]\i7) >n and Bl(u,]én) < 1—77,Y1<u,]\§n> <1-—mn.
= G2(T'(u),§) 2 nand By(T'(u),§) <1—n,Ya(T'(u),§) <1—n.

Example 4.2 Let (X,||.||2) be a 2-normed space. Define a o b = min{a,b}, aob =
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max{a, b} for a,b € [0, 1];

E—(Juruzll2)®
G (ur, uz, &) = { EHllurull)? if & > [lur, ua||
0 if € < lur, ua| ;
_2(Juru2fl2)®
Bi(ug,ug, &) = { & Hlunuzll2)? if & > lur, uz|
0 if € < [fus, ua] ;
2(Jlua,uzll2)* e llur.u
H(UL’ng,g): &2 ' 5 H 1, 2”
0 if & < [Jus, o] ;

Ga(uy,ug,§&) = E+llur,uzll2 1 3 , VUL, U2
0 if € <0,V up,up € X ;

llui,uzll2 :
Bo(ur, up, £) = 4 Elurl 16> 0 Vun,uz €X
0 if € <0,V up,us € X5

loaele g > 0,5 up,up € X
0 if &€ <0,V up,us € X

If £ > 0 and G1,Go, By, B, Y] and Y; are said to be zero for £ < 0. Then it easy to see
that U = (X?2,G1, By, Y1,0,0) and V = (X?,G3, Bo, Ya,0,0) are N —2NLS.

Define an operator T : U — V by T(u) = u where u = (u1,us) € X2. If we choose
M, = fln vV n € (0,1), then for & > |Juy, uz||2 we have

Yo(u1,u2,§) = {

§2(1 —n)? = ([|u, ual2)?
E2(1 —n)? + ([Ju1, uzl]2)?

§
— | >
Gy <U17U27 M, )~ n =

(1= 1) = (|lur, u2)|2)* = € (1 = 0)* + nflur, uz2)”

(1- n)” +
= &1 —n)* =0 (1 —n)* = ([[ur, uall2)® + n([ur, uzl|2)?
= A —n)*1—n) = 1 +n)(lus, uzll2)

201 _ )3 > 2 52( 77)3 2
= (1 -n)° > (1 +n)([Jur,uz2)” = > (flur, uzll2)

(1 )
(1 —n)?

(1+n) = [Jur, uzlls < (1+n)%
= I, vl = o Z ke = &+ |lur,uzll2 < dt —77)(1—177)5
(1+mn)2 a4
§1—m(1—n)2 +£(1+n)
(1—}—77)%
L —n)(1—n)2 + (1 +7)2]
(14n)2
_ s _ (1—17)(1_7,)%T(1+77)%
¢ - (I+n)2

= (|lur, uz)]2)? <

+¢

N|=

= &+ ||Jur, uzll2 <

D=

= &+ ||lur, uzll2 <
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& (1+n)>
4 llur,uallz = (1—n)(1 - 77)%
Now,

1
n(l—n)(1-— 77)% (squaring both sides)
L=m) =1+n20"—n> =1+n+9’ 29"
This is true ¥V n € (0,1) by (9) we get,
Go(T(u1,u2),§) > nif € > ||uy, uszll2. Since, & < |Jug, uzl|2,
that

€2 —k(||u,uzll2)?

T h(luruala)? = 0, it means

Gilus, w2, 25) 2 0= Ga(Tur,w2),€) 2 0 ¥ € (0,1),
n

For all cases, we get,

G1(u1,u2, Mi) >n = Ga(T(ur,u2),&) >nVne(01).
n

Now

Bl(u17u27 Mi) <1l- n= BQ(T(ulaUQ)ag) <1l- n v ne (07 1);
n
2||z||?
& (1—a)*+|z|?

2]l2]* < (1 - ) <£2(1 —a)?+ ||fv|2> = 2||z|* < (1 - a)(€2(1 — a)* + (1 — a)[|=?)

Bl(ul,UQ,Mi)glfozj <l-a«

= 2|z = (1 - a)llz]* < (1 — )’¢® = 2|z — [[=[]* + allz]* < (1 - 1)3523 .
> ||x||2+a||x||j < <1—a>352 <1+1a>||m||2 (1) = [lof2 < U708
)2 —a)(1-)2¢ (1-a)(1-a)3¢

= < =28 < (=d=e)2E ¢y < U=o)l=a)38
ol < G2 = ol < B0 o oo < S5 1
:>§+ HCCH < (1 a)(l—a)?ﬁ-{-ﬁ(l—l—a)? :>£+HQ?|| < f[(l a)(l a)21+(1+a)§]
(14a)2 (1+ )2
=4 2| < llzl[(1—c)(1— Oé)2+(1+04)2] - el  (A=0)(1= @)% +(1+a)?
(1+a )2 =l = (14+a)2
[ES (1+a)?
= &l < (1—04)(}—04)%4—(1—&-04)%
Now A+a)? < (1-a) = (1+a): <(1-a)(l-a)(l-a):+(1—a)(l+a)?

’ (1fa)1(1fa)%+(1+a)? -
= (I+0a)2 = (L—a)(l+a)2 < (1- a)?(1—a) 1
(1+0z)21—(1+a)2 —I—oz(l—i—1 )2 < (1—-a)*(1—a)2
=a(l+a)?2 <(1-a)?l-a)? (squarmg both s1des)
(1+a) <(l-a)tl-a) =2a?+a3<(1-a)!—al—a)
a4+ <[(1-a)?P-a[(l-a)?? =a?+a3 <[l -2a+a?? - a[l —2a+a?)?

N|=
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= a2 +ad <[l +4a?+ a* —da — 403 + 2% — o[l +4a? + o* — da — 4a® + 202]
=af+a’3< [1+4a2+a4—4a—4a3+2a2]—a—4a3—a5+4a2+4a4—2a3
= a? +a® <1+ 10a% + 50t — 5a — 1003 — o

= o + 1002 + 5a + o® <1+ 10a? + 50* — a?. This is true ¥V n € (0,1) we get,

Bo(T(u1,u2),&) < 1—nif & < ||ui,usll2. Since, & > |Jug, ua||2, &

2+ (lu1,uzl2)? = 0, it means
that

By <u1,u2,]\§> <1-n= By(T(u1,u2),§) <1—-nVne(1)
0

Similarly,

Y1<U1,U2, ]5[) <1-—n=Y(T(u1,u2),§) <1—-nVne(0,1).
"

This shows that T is weakly neutrosophic bounded.

Theorem 4.1 If a linear operator T' : U — V is strongly neutrosophic bounded on U,
then it is weakly neutrosophic bounded on U.

Proof Suppose that T': U — V is strongly neutrosophic bounded on U. So, 3 M > 0
s.t forallu e U and n >0

Go(T(u),n) > Gy u,i and
(37) .

By(T(u),m) < By (u AZ) Ya(T(u),n) < Vi <u ;j)

Let, 0 < & < 1, then 3 M¢(= M > 0) s.t

n n n
— | > <1 L)l <1 =
Gl(u, Mg) > ¢ and B1<u, Mg) <1 f,Yl<u, Mg) <1-¢

= Gg(T(u),n) > @Gy <u, AZ&) > ¢ and BQ(T(u),n) < B <u, ]\Z) <1-¢&,

Yo (T(u),n) <V <u, AZ{) <1-¢&. (using (10))

As this holds for all w € U and n > 0, therefore T : U — V is weakly neutrosophic
bounded. U

Theorem 4.2 A linear operator T : U — V is strongly neutrosophic continuous every-
where on U if T is strongly neutrosophic continuous at a point ug € U.
Proof Let ug € U be a point in U s.t T : U — V is strongly neutrosophic continuous at
ug. We shall prove that T is strongly neutrosophic continuous everywhere in U. Since T
is strongly neutrosophic continuous at ug so for each ¢ > 0, 3§ > 0 s.t

Go(T(u) — T'(up),€) > G1(u — ug,d) and Ba(T'(u) — T'(ug), €) < By(u — ug,d),

Yo (T (u) — T(uo), €) < Yi(u— ug,6). (11)

Let v € U be any element of U, then u + ug — v is also an element of U, and therefore by
replacing u by u~+up—wv in (11), we have Go(T (u+uo—v)—T(ug), €) > Gi(u+ug—v—ug, )
= G2(T(u+up—v) —T(up),€) > Gi(u—0,0) ie., Go(T(u) —T(v),€) > G1(u—v,0) and
By (T(u+ ug —v) —T'(ug),€) < Bi(u+ug —v —1up,0) = Ba(T'(u+up —v) —T(up),€) <
Bi(u—v,6)i.e., Bo(T(u)—T(v),€) < Bi(u—v,d) Similarly, Yo(T(u)—T(v),€) < Y1(u—wv,0).
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Since, v € U was arbitrarily selected so T : U — V is strongly neutrosophic continuous.
O

Theorem 4.3 A linear map T : U — V is strongly neutrosophic continuous if and only if
T is strongly neutrosophic bounded.

Proof Suppose that T : U — V is strongly neutrosophic continuous on U, then T is
strongly neutrosophic continuous at § € U where 6 denote the zero element of U. So for
e=1,3>0stforalueclU

Go(T(u) —T(0),1) > G1(u—6,0) and
By(T(u) — T(0),1) < Bi(u—6,0), Yo(T(u) —T(0),1) < Yi1(u—0,9).

Case 1. Let u # 6 and n > 0. Takev:%

G2(T(u),n) = G2(T(nv),n) = G2(nT'(v),n) = Go(T(v), 1)
> G1(v,9) =Gy <77

where M = } i.e Go(T(u),n) > G <u, %

By(T'(u),n) = Ba(T(nv), n)

<tco-(30) -5 (u) -5 (0
)

where M = % i.e Bo(T( ) < Bl< ,l similarly, Y>(T (u),n) < Y1 <u, 77>.
Case 2. Ifu-@andn>0 then T'(f) = 6 and

Ga(0,7) = Gy (9, ;\74) — 1 and By(6,7) = By (9, ;\74) —0, Ya(6,1) = Y3 (9, AZ) — 0.

Therefore, in both cases, we have T is strongly neutrosophic bounded.
Conversely, suppose that T is strongly neutrosophic bounded so 3 M > 0 st V u €
Uandn>0

G (T (u),m) > Gy (u AZ) and By(T(u). ) < By (u ﬂ) BT < T (u fé)

Let € > 0, then we have

G2(T(u),€) > Gy <u, ]\64> and Bo(T'(u),€) < By <u, J\64>’ Yo(T(u),e) <Y (u, ]\Z)
Take § = 7, then
Go(T(u) —T(0),€¢) > G1(u — 6,0) and
By(T(u) —T(0),€) < Bi(u—6,9), Yo(T(u) —T(0),e) <Yi(u—6,0),

and therefore T is strongly neutrosophic continuous on U. [J

Theorem 4.4 If a linear operator T : U — V is sequentially neutrosophic continuous at
ug in U then it is sequentially neutrosophic continuous on U.

Proof.

Proof Suppose that T : U — V is sequentially neutrosophic continuous at ug in U. We
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shall show that 7' is sequentially neutrosophic continuous on U. Let u € U be any arbi-
trary and (ug) be any sequence converging to u w.r.t N1(G1, By, Y1) then, we have for all
n>0

lim Gy (ug —u,n) =1 and lim By (ux — w,n) = lim Y7 (ux — u,n) = 0.
k—o00 k—o00 k—o00
This implies that
lim Gy ((ug —u + ug) — up,n) =1 and
k—o0
lim By ((ur — u+uo) — uo,n) = lim Y1 ((ug — u + uo) — ug,n) = 0.
k—o0 k—o0
Since T is sequentially neutrosophic continuous at wug.
lim Go(T (u, — u + up) — T'(ug),n) =1 and
k—o0
lim Bo(T(ug — u+ ug) — T(up),n) = lim Yo(T (ur — u + ug) — T'(ug),n) = 0.
k—o0 k—o0

This gives for each > 0

klin;oGg(T(uk) —T(u),n) =1 and
Jim By (T i) — (), 1) = 0, lim Ya(T(ug) — T(u), ) = 0.

This shows that (T'(ux)) — T(u) w.r.t Na(Ga, Bs,Ys2) and therefore T' is sequentially
neutrosophic continuous on U. [J

The proof of the following two Theorems is omitted as it can be obtained analogously
to the proofs of Theorem 4.2 & Theorem 4.3

Theorem 4.5 A linear operator T : U — V is weakly neutrosophic continuous on U if T
is weakly neutrosophic continuous at a point ug in U.
Proof. Omitted.

Theorem 4.6 A linear operator T : U — V is weakly neutrosophic continuous if and only
if T' is weakly neutrosophic bounded.
Proof Omitted. (follow the proof Theorem 4.3).

5. CONCLUSION

Neutrosophic norm is an important generalization of fuzzy norm defined for those prob-
lems of real world which seems difficult to solve by crisp norm due to complex indetermi-
nacy and vagueness. In present work we developed some topological aspects of continuity
and boundedness in a more general context i.e. in neutrosophic 2-normed space. The
results present here will be helpful to develop these spaces mathematically.

Open Problems: Extension of some topological concepts in neutrosophic -n- normed
linear spaces.
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