dc.contributor.author | Korkmaz, Alper | en_US |
dc.contributor.author | Akmaz, Hakan Kasım | en_US |
dc.date.accessioned | 2020-10-15T06:12:52Z | |
dc.date.available | 2020-10-15T06:12:52Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Korkmaz, A. & Akmaz, H. K. (2018). Numerical solution of non-conservative linear transport problems. TWMS Journal Of Applied And Engineering Mathematics, 8(1A), 167-177. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2654 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/98-vol8no1a/333 | |
dc.description.abstract | In this study, trigonometric cubic B-spline differential quadrature method is developed for a linear transport problems constructed on the advection-diffusion equation. The weighting coefficients used in the derivative approximations are determined by using the proposed algorithm. Following the space discretization of the advectiondiffusion equation, the resultant ODE system is integrated in time by using Rosenbrock implicit method of order four. The accuracy and validity of the proposed method are indicated by solving some initial boundary value problems (IBVPs) representing fade out of an initial positive pulse. The error between the analytical and the numerical solutions is measured by using the discrete maximum norm. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Advection-diffusion equation | en_US |
dc.subject | Trigonometric cubic B-spline | en_US |
dc.subject | Differential quadrature method | en_US |
dc.subject | Transport | en_US |
dc.subject | Brusselator system | en_US |
dc.subject | Collocation method | en_US |
dc.subject | Dispersion | en_US |
dc.subject | Dirichlet | en_US |
dc.subject | Algorithm | en_US |
dc.title | Numerical solution of non-conservative linear transport problems | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 8 | |
dc.identifier.issue | 1A | |
dc.identifier.startpage | 167 | |
dc.identifier.endpage | 177 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |