Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDamirchi, Javaden_US
dc.contributor.authorShagholi, Saeeden_US
dc.contributor.authorFoadian, Saedehen_US
dc.date.accessioned2025-03-10T06:33:12Z
dc.date.available2025-03-10T06:33:12Z
dc.date.issued2025-03-01
dc.identifier.citationDamirchi, J., Shagholi, S. & Foadian, S. (2025). Cubic-Bspline collocation method for numerical solutions of the nonlinear fractional order Klein–Gordon equation. TWMS Journal of Applied and Engineering Mathematics, 15(3), 526-537.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/current/129-vol15no3/1345
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handleiubelgelik/6441
dc.description.abstractThis research paper focuses on utilizing the cubic-Bspline collocation method to obtain numerical solutions for the time-fractional nonlinear Klein–Gordon (TFNKG) equation. The Klein–Gordon (KG) equation, which characterizes nonlinear wave propagation, is extended by replacing the time derivative in Caputo sense of order derivative of order α, (1 < α ≤ 2). The L2 discretization formula is employed to approximate the time-fractional derivative. The spatial variable is discretized using cubic B-spline basis functions, and the nonlinear terms are linearized using the quasilinearization technique. Through the proposed method, the main problem is transformed into a more computationally manageable problem. Numerical examples involving different types of nonlinearities are tested to demonstrate the accuracy of the developed scheme. The simulations confirm the high accuracy of the proposed method when compared to analytical solutions, as well as other methods such as the Sinc-Chebyshev collocation method (SCCM) and the variational iteration method (VIM). The accuracy of the developed scheme is also evaluated using error norms L∞ and L2. The research findings of this study substantiate the efficacy and credibility of the proposed methodologies in the analysis of fractional differential equations.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectFractional Klein–Gordon equationen_US
dc.subjectCaputo derivativeen_US
dc.subjectCubic-Bspline methoden_US
dc.subjectQuasilinearizationen_US
dc.titleCubic-Bspline collocation method for numerical solutions of the nonlinear fractional order Klein–Gordon equationen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume15
dc.identifier.issue3
dc.identifier.startpage526
dc.identifier.endpage537
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess